

Ground Motions and Ground Failure

Jonathan P. Stewart, UCLA

January 16-17, 2014 - University of California, Los Angeles

Impacts

- Ground motions well recorded
- Important features of ground motions
 - Near fault effects
 - Local damage from site amplification
- Broad range of ground failure
 - Liquefaction-related features
 - Ground failure in non-traditional soils
 - Landslides

Impacts: Ground motions

Instrumental intensity Shakemap.

INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	IX	X+
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
POTENTIAL DAMAGE	none	none	none	Very ight	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PERCEIVED	Notielt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme

Source: http://earthquake.usgs.gov/earthquakes/shakemap/sc/shake/Northridge/

Impacts: Ground motions

Source: http://pasadena.wr.usgs.gov/office/wald/CUREe.html

Impacts: Ground motions

Clustering of redtagged buildings

Impacts: Liquefaction

Tapo Canyon flow failure

Source: Yoshi Moriwaki

Impacts: Liquefaction

Redondo Beach Wharf failure

Source: Stewart et al., 1994: EERC 94-08.

Impacts: Liquefaction

SYMPOSIUM

Pipe breaks – many in liquefaction zones

Source: Jeon and O'Rourke, 2005; Stewart et al., 1996 *BSSA*.

Impacts: Ground failure in finegrained soils

Balboa Blvd., Grenada Hills

Malden St., Northridge

Impacts: Ground failure in compacted fills

Ground deformations in unsaturated, compacted fills soils

Source: Alan Kropp & David McMahon

Impacts: Landslides

Widespread seismic landslides.

Incidents of 'valley fever'

Source: Jibson, 2002: Surveys in Geophysics

Outcomes: Ground motion

- NGA program:
 - Improved processing and dissemination of ground motions.
 - Ground motion prediction models, including near-source and site effects
- Building code ground motions:
 - Mapping
 - Site amplification

Outcomes: Ground motion prediction

Outcomes: Ground motion prediction

Outcomes: Ground motion prediction

œ 0 00 **Moment Magnitude** 0.1 Closest distance to fault (km)

Pre-Northridge recordings

Northridge recordings

Current DB (NGA-West 2)

Outcomes: Building code ground motions

Before Northridge: 1. Zone map

Source: Blue Book, 1996

Outcomes: Building code ground motions

Before Northridge:

1. Zone map

2. Linear PGA site factor

Table 104-2. Site Coefficients¹

Туре	Description	S Factor
S1	A soil profile with either:	1.0
	 A rock-like material characterized by a shear-wave velocity greater than 2,500 feet per second, or by other suitable means of classification 	
	or:	
	Medium stiff to stiff or medium dense to dense soil conditions where soil depth is less than 200 feet	
S ₂	A soil profile with predominantly medium dense to dense or medium stiff to stiff soil conditions, where soil depth exceeds 200 feet	1.2
S_3	A soil profile containing more than 20 feet of soft to medium stiff clay but not more than 40 feet of soft clay	1.5
S ₄	A soil profile characterized by a shear wave velocity of less than 500 feet per second, and containing more than 40 feet of soft clay	2.0

Source: Blue Book, 1996

Outcomes: Building code ground motions

Before Northridge:

- 1. Zone map
- 2. Linear PGA site factor
- 3. Site-dependent spectral shapes

Outcomes: Building code ground motions

Since Northridge: 1. USGS online hazard maps

Source: http://earthquake.usgs.gov/hazards/

43 43° 42" 42 41 41° 40-40° 39" 39° 38 38 37 37 36 36 35 35° 34" 34° G 33* 33° 100 200 32. 32 31 31' -125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

2009 Apr 7 09:55:23 PGA NSHMP 2008. Red lines are Ofaults. Site Vs30 760 m/s. 2% in 50 yr PE. UCERF fault models.

Calif NV, PGA w/2%PE50yr. 760 m/s Rock

Outcomes: Building code ground motions

Since Northridge:

- USGS online hazard maps
- 2. Nonlinear site factors for shortand mid-periods (F_a and F_v)
- 3. Procedures for sitespecific analysis

Source: Seyhan & Stewart, 2014: Spectra.

Outcomes: Ground failure

Legend

NC S Liquefaction

Earthquake-Induced Landslides

Source: C. Real, 2014

idge20.org

Outcomes: Ground failure

Source: C. Real, 2014

Many high-risk areas remain unmapped.

Next Steps and Recommendations

- Sustained funding for ground motion research
 - Maintenance of arrays
 - Updating of databases
 - Periodic development of improved GMPEs
- Develop community ground failure database & models
- Increase funding for CGS seismic hazards mapping (liquefaction, landslides, faults)

Friday Breakout

Ground motion, site response, and ground failure

- Ground motion simulations. Paul Somerville, URS.
- GMPE advancements. **Yousef Bozorgnia**, PEER.
- Ground motion selection/scaling. Christine Goulet, PEER.
- Nonlinear site response. **Youssef Hashash**, UIUC.
- Liquefaction and ground failure. Tom Holzer, USGS.
- Slope stability and compacted fill. Tom Blake, Fugro.
- Panel discussion.

Next Steps

- Periodic updating of GMPEs
 - Incorporate new data
 - Apply lessons learned from validated simulations
 - Especially critical for Pacific NW and CEUS
- Next-generation ground failure models
 - Fine-grained materials
 - Effects of ground failure on structures
- More complete seismic hazards mapping
 - Liquefaction and landslides
 - Surface fault rupture

