

Structural Steel

Thomas A. Sabol, Ph.D, SE Principal, Englekirk Institutional, Inc. Adjunct Professor, University of California, Los Angeles

January 16-17, 2014 - University of California, Los Angeles

Impacts – Structural Steel

- Unexpected Problems in Steel Seismic Systems
 - Fractures in steel moment frame beam-tocolumn connections
 - Fractured steel braces in braced frames

 Primary problem: brittle fractures of the weld between beam flange and column flange

SYMPOSIUM

 Primary problem: brittle fractures of the weld between beam flange and column flange

- Causes of Problems in Steel Moment Frames
 - Design Problems

Use of less reliable version of tested moment frame connection

Use of deep steel beam sections

All-welded: better performer

Bolted web: not so much

- Causes of Problems in Steel Moment Frames
 - Construction Problems
 Weld metal with low resistance to brittle fracture
 Welders did not follow required welding procedures

- Causes of Problems in Steel Moment Frames
 - Inspection Problems

Over-reliance on after-the-fact inspection methods

Lack of diligence on the part of some inspectors

- Solutions to Problems in Steel Moment Frames
 - Development of moment frame connection designs based on thorough research
 FEMA-sponsored SAC Joint Venture
 AISC Connection Pre-Qualification Panel

- Solutions to Problems in Steel Moment Frames
 - Use of steel and welding materials with improved seismic characteristics

- Solutions to Problems in Steel Moment Frames
 - Improved Inspection Practices
 Increased reliance on visual inspection
 Availability of standardized inspection requirements in building codes

Improved certification programs (e.g., ICC-ES, AISC)

Primary problem: fractured braces

- Causes of Problems in Steel Braced Frames
 - Use of braces with excessively thin walls

- Causes of Problems in Steel Braced Frames
 - Overcutting slots in braces required for fit-up

- Solutions to Problems in Steel Braced Frames
 - Specification of minimum ratio for wall thickness to brace width
 - Explicit consideration of impact of slots in braces

- Solutions to Problems in Steel Braced Frames
 - Requirement that connections develop strength of brace
 - Revised analytical methods to account for brace buckling

Recommendation - Practice

 Waiver of steel inspection requirements for seismic force resisting systems now permitted in 2012 *International Building Code* (2013 *California Building Code*)

Recommendations - Research

- Improve understanding of seismic behavior correlation between individual components and actual structures
- Improve understanding of tall steel buildings and steel buildings with heavily loaded columns during earthquakes
- Improve understanding of multi-tier braced frame behavior
- Develop reliable seismic performance standards for steel structures

