Structural Steel

Thomas A. Sabol, Ph.D, SE
Principal, Englekirk Institutional, Inc.
Adjunct Professor, University of California, Los Angeles

January 16-17, 2014 - University of California, Los Angeles
Impacts – Structural Steel

- Unexpected Problems in Steel Seismic Systems
 - Fractures in steel moment frame beam-to-column connections
 - Fractured steel braces in braced frames
Impacts – Moment Frames

- Primary problem: brittle fractures of the weld between beam flange and column flange
Impacts – Moment Frames

- Primary problem: brittle fractures of the weld between beam flange and column flange

[Diagram of moment frame]

[Image of weld crack]

Business card in weld crack
Impacts – Moment Frames

- Causes of Problems in Steel Moment Frames
 - Design Problems
 - Use of less reliable version of tested moment frame connection
 - Use of deep steel beam sections

All-welded: better performer
Bolted web: not so much
Impacts – Moment Frames

■ Causes of Problems in Steel Moment Frames
 ■ Construction Problems
 Weld metal with low resistance to brittle fracture
 Welders did not follow required welding procedures
Impacts – Moment Frames

- Causes of Problems in Steel Moment Frames
 - Inspection Problems
 Over-reliance on after-the-fact inspection methods
 Lack of diligence on the part of some inspectors
Impacts – Moment Frames

- Solutions to Problems in Steel Moment Frames
 - Development of moment frame connection designs based on thorough research
 - FEMA-sponsored SAC Joint Venture
 - AISC Connection Pre-Qualification Panel
Impacts – Moment Frames

- Solutions to Problems in Steel Moment Frames
 - Use of steel and welding materials with improved seismic characteristics
Impacts – Moment Frames

- Solutions to Problems in Steel Moment Frames
 - Improved Inspection Practices
 - Increased reliance on visual inspection
 - Availability of standardized inspection requirements in building codes
 - Improved certification programs (e.g., ICC-ES, AISC)
Impacts – Braced Frames

- Primary problem: fractured braces
Impacts – Braced Frames

- Causes of Problems in Steel Braced Frames
 - Use of braces with excessively thin walls
Impacts – Braced Frames

- Causes of Problems in Steel Braced Frames
 - Overcutting slots in braces required for fit-up
Impacts – Braced Frames

- Solutions to Problems in Steel Braced Frames
 - Specification of minimum ratio for wall thickness to brace width
 - Explicit consideration of impact of slots in braces
Impacts – Braced Frames

- Solutions to Problems in Steel Braced Frames
 - Requirement that connections develop strength of brace
 - Revised analytical methods to account for brace buckling
Recommendation - Practice

Recommendations - Research

- Improve understanding of seismic behavior correlation between individual components and actual structures
- Improve understanding of tall steel buildings and steel buildings with heavily loaded columns during earthquakes
- Improve understanding of multi-tier braced frame behavior
- Develop reliable seismic performance standards for steel structures