

ASCE 41

John Hooper, Magnusson Klemencic Associates

FEMA 357: ASCE/FEMA 273 Prestandard Project

- Global Topics Report:
 - Incorporating Results of the SAC Joint Venture
 Steel Moment Frame Project
 - One of numerous reports produced as part of FEMA 357
- Modifications Proposed to the 2nd Draft of the FEMA 356 Prestandard for the Seismic Rehabilitation of Buildings
- Report is located in Appendix K

Source Documents for Review

FEMA 350 – Recommended Seismic
 Design Criteria for Moment-Resisting Steel
 Frame Structures

 FEMA 351 – Recommended Seismic Evaluation and Upgrade for Existing Welded Steel Moment-Resisting Frame Structures

Source Documents for Review

 FEMA 355c – State of Art Report on Systems Performance

 FEMA 355d – State of Art Report on Connection Performance

 FEMA 355f – State of Art Report on Performance Prediction and Evaluation

- Commentary added describing FEMA 351 and its applicability for evaluation and rehabilitation of steel moment frames
- FEMA/SAC reference documents added

- Section 5.3.2.5 Default Properties
 - Default values updated to reflect SAC research
 - Expected and lower-bound values changed to mean and mean minus one standard in Table 5-2
- Section 5.5.1
 - New Table 5-X (became 5-4) added to describe new connections
 - Includes most connections contained in FEMA 351 and FEMA 355d
 - Connections are defined as FR or PR

5 -X Steel Moment Frame Connection Types		
Connection	Description 1,2	Туре
Welded Unreinforced Flange (WUF)	Full-penetration welds between beam and columns flanges, bolted or	FR
	welded web, designed prior to code changes following the	
	Northridge earthquake	
Bottom Haunch in WUF w/ Slab	Welded bottom haunch added to existing WUF connection with	FR
	composite slab ³	
Bottom Haunch in WUF w/o Slab	Welded bottom haunch added to existing WUF connection without	FR
	composite slab ³	
Welded Cover Plate in WUF	Welded cover plates added to existing WUF connection ³	FR
Improved WUF-Bolted Web	Full-penetration welds between beam and column flanges, bolted	FR
	web ⁴	

Improved WUF-Welded Web	Full-penetration welds between beam and column flanges, welded	FR
	web ⁴	
Free Flange	Web is coped at ends of beam to separate flanges, welded web tab	FR
	resists shear and bending moment due to eccentricity due to coped	
	web ⁴	
Welded Flange Plates	Flange plate with full-penetration weld at column and fillet welded	FR
	to beam flange ⁴	
Reduced Beam Section	Connection in which net area of beam flange is reduced to force	FR
	plastic hinging away from column face 4	
Welded Bottom Haunch	Haunched connection at bottom flange only 4	FR
Welded Top and Bottom Haunches	Haunched connection at top and bottom flanges 4	FR
Welded Cover-Plated Flanges	Beam flange and cover-plate are welded to column flange 4	FR

- Section 5.5.2.4 Acceptance Criteria— Linear
 - Beams
 - Added modifiers based on effects of web slenderness
 - Columns
 - Commentary added to note that SAC procedure for axial compression and splice tension differ (no flexural consideration)
 - Added modifiers based on effects of web slenderness
 - Vary based on P/Pcl ratio

- Section 5.5.2.4 Acceptance Criteria— Linear
 - FR Beam-Column Connections
 - Added modifiers based on effects of beam web slenderness
 - Varies for 0.5 for upper slenderness limit to 1.0 for lower limit
 - Based on FEMA 356 approach that linear procedure m values are set at 0.75 times those permitted in nonlinear procedures:
 - Assigned m values for ductility capacity for linear procedures of 1.0 and 0.86 times those for nonlinear procedures (IO and CP)

- Section 5.5.2.4 Acceptance Criteria— Nonlinear
 - FR Beam-Column Connections
 - Added adjustment for plastic rotation capacity for small span-to-depth ratios
 - Reduced plastic rotation capacity by ½ as L/d goes from 8 to 5
 - Based on FEMA 356 approach that ductility capacity for primary elements be taken as 0.75 times those permitted secondary elements
 - Used 1/γ average for CP performance of SAC connection types 1 and 2 (0.76 and 0.66) to develop primary acceptance criteria taken from FEMA 355d secondary acceptance criteria

- Section 5.5.2.4 Acceptance Criteria— Nonlinear
 - Resulting Table 5-5 (became Table 5-6):

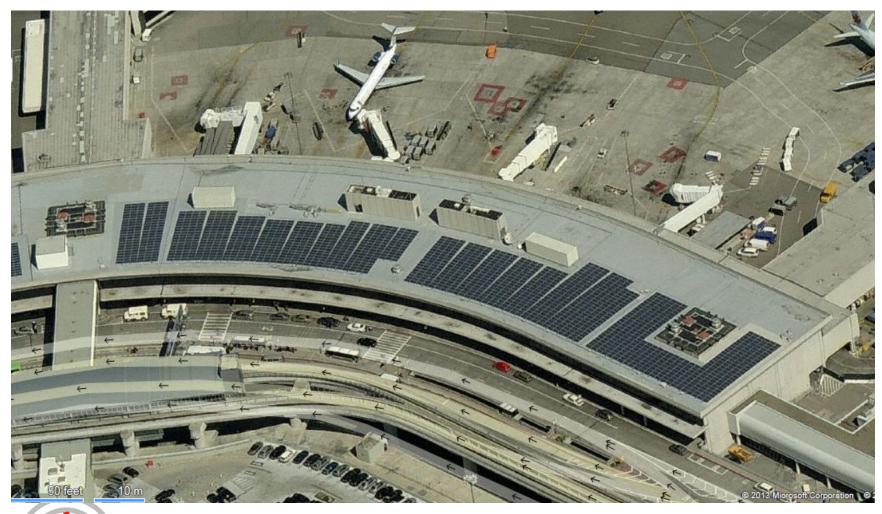
Additional nonlinear modeling and acceptance criteria (add to Table 5-5)

		,			Primary		Secondary		
Connection	a	b	C	IO	LS	CP	LS	CP	
FR Connections									
WUF	0.051 - 0.0013d	0.043 - 0.0006d	0.2	0.0128 - 0.0003d	0.0337 - 0.0009d	0.0284 - 0.0004d	0.0323 - 0.0005d	0.043 - 0.0006d	
Bottom haunch in WUF with slab	0.026	0.036	0.2	0.0065	0.0172	0.0238	0.0270	0.036	
Bottom haunch in WUF without slab	0.018	0.023	0.2	0.0045	0.0119	0.0152	0.0180	0.023	
Welded cover plate in WUF	0.056 - 0.0011d	0.056 - 0.0011d	0.2	0.0140 - 0.0003d	0.0319 - 0.0006d	0.0426 - 0.0008d	0.0420 - 0.0008d	0.056 - 0.0011d	
Improved WUF-bolted web	0.021 - 0.0003d	0.050 - 0.0006d	0.2	0.0053 - 0.0001d	0.0139 - 0.0002d	0.0210 - 0.0003d	0.0375 - 0.0005d	0.050 - 0.0006d	
Improved WUF-welded web	0.041	0.054	0.2	0.0103	0.0312	0.0410	0.0410	0.054	
Free flange	0.067 - 0.0012d	0.094 - 0.0016d	0.2	0.0168 - 0.0003d	0.0509 - 0.0009d	0.0670 - 0.0012d	0.0705 - 0.0012d	0.094 - 0.0016d	
Reduced beam section	0.050 - 0.0003d	0.070 - 0.0003d	0.2	0.0125 - 0.0001d	0.0380 - 0.0002d	0.0500 - 0.0003d	0.0525 - 0.0002d	0.07 - 0.0003d	
Welded flange plates									
Flange plate net section	0.03	0.06	0.2	0.0075	0.0228	0.0300	0.0450	0.06	
Other limit state	force-controlled								
Welded bottom haunch	0.027	0.047	0.2	0.0068	0.0205	0.0270	0.0353	0.047	
Welded top and bottom haunches	0.028	0.048	0.2	0.0070	0.0213	0.0280	0.0360	0.048	
Welded cover-plated flanges	0.031	0.031	0.2	0.0078	0.0177	0.0236	0.0233	0.031	
PR Connections									
Shear connection with slab	0.029 - 0.0002dbg	0.15 - 0.0036dbg	0.4	0.0073 - 0.0001dbg			0.1125 - 0.0027dbg	0.15 - 0.0036dbg	
Shear connection without slab	0.15 - 0.0036dbg	0.15 - 0.0036dbg	0.4	0.0375 - 0.0009dbg			0.1125 - 0.0027dbg	0.15 - 0.0036dbg	

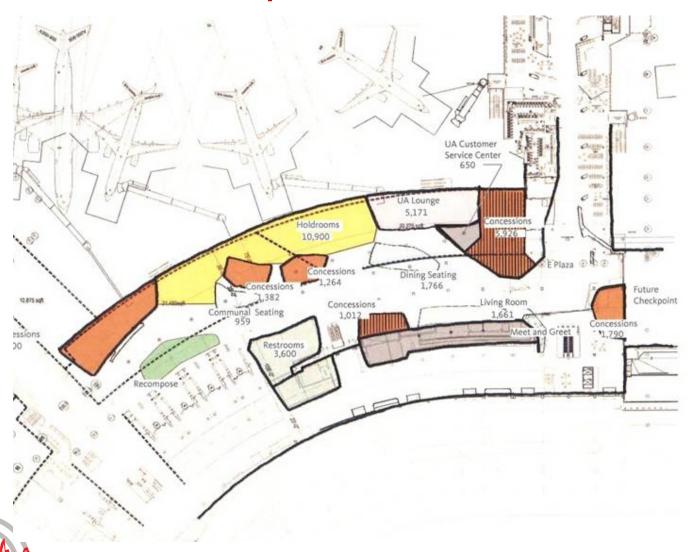
d is the depth of the beam.

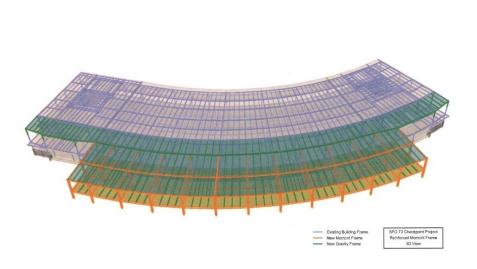
dba is the depth of the bolt group.

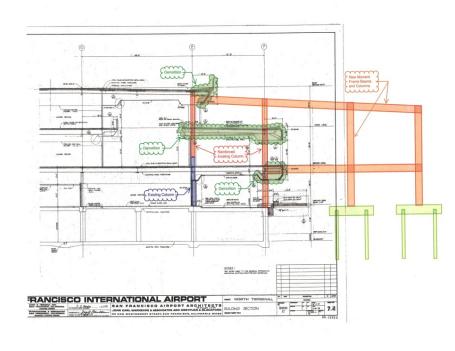
Tabulated values shall be modified as indicated in Sec. 5.5.2.4.3, item 4.



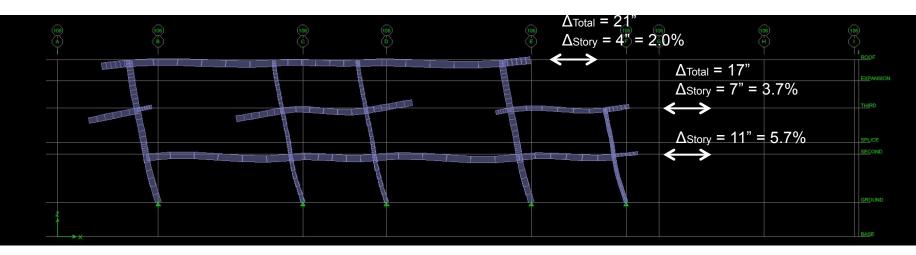
ASCE 41—Not Just for Existing Buildings

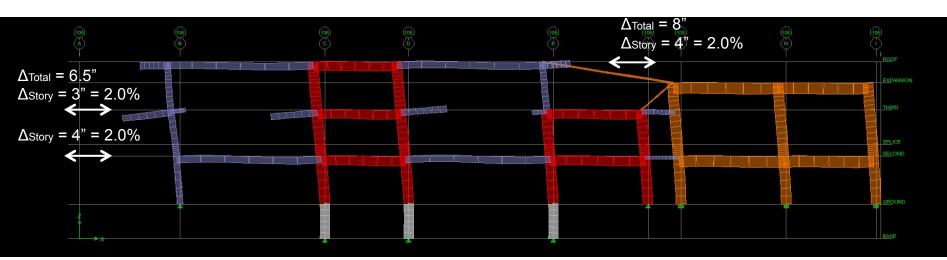

- Primary focus is existing buildings
- Used for new building designs as well

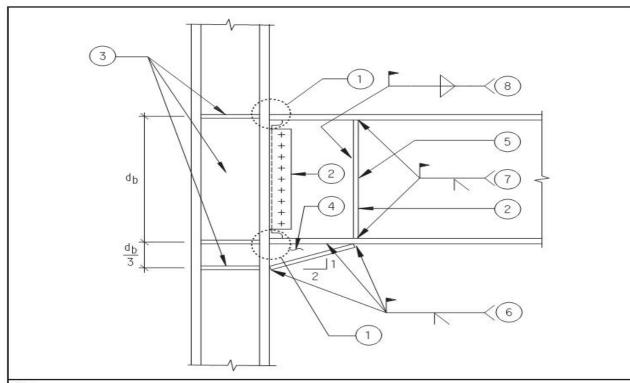



NORTHRIDGE 20

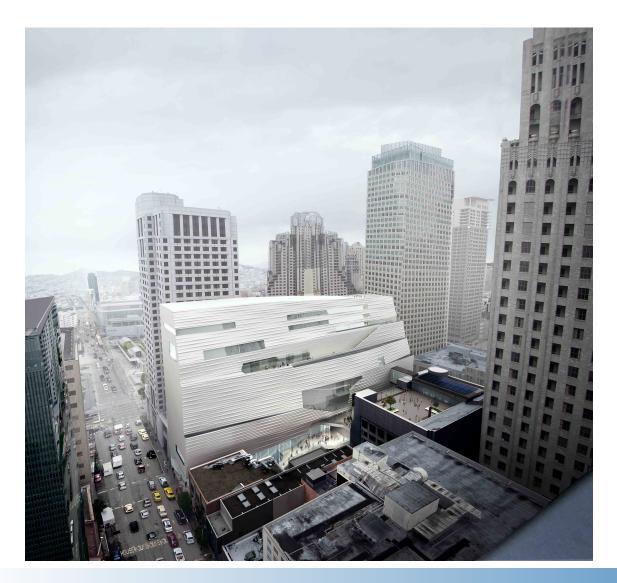
SYMPOSIUM

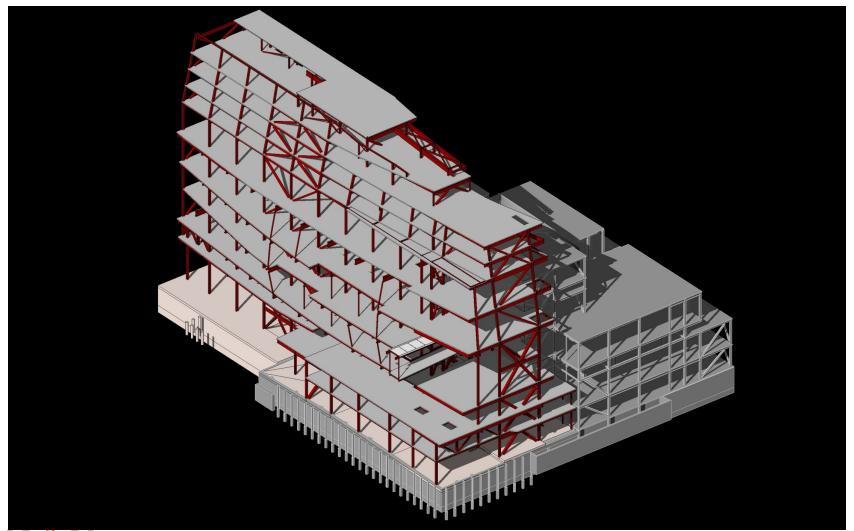


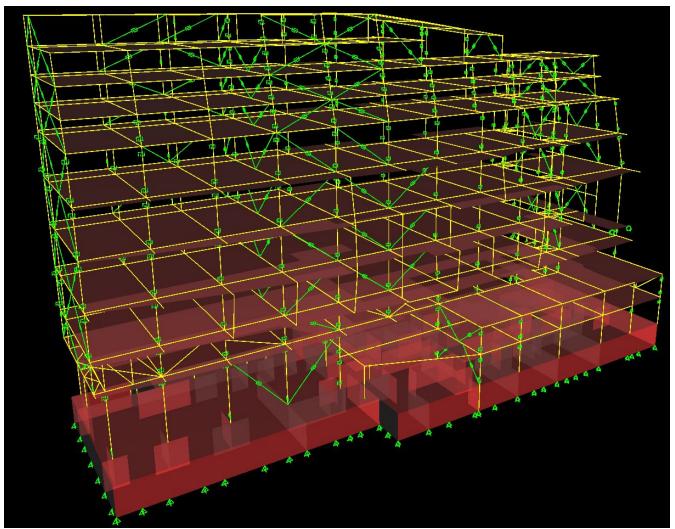


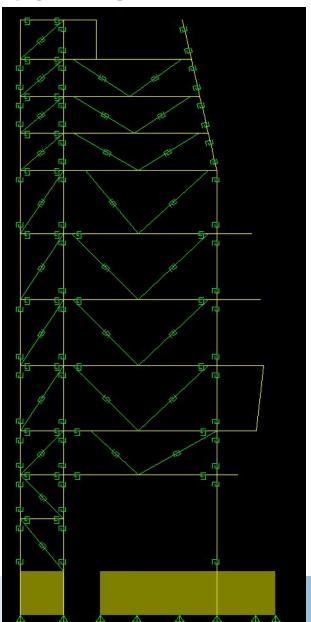


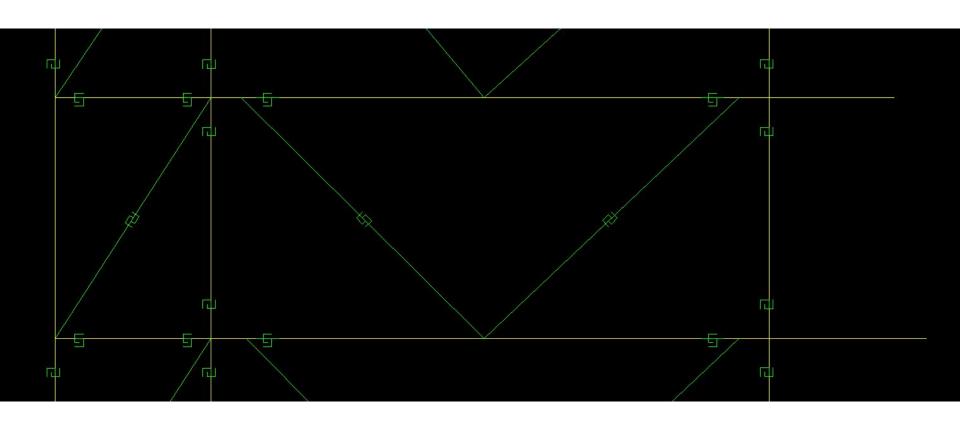
Existing Condition


Retrofitted Condition


Notes


- 1. For OMF connection, existing weld can remain. For SMF connection, see Figure 6-11.
- Existing bolted shear tab.
- 3. Existing continuity plates and web doubler plate. See Figure 6-9.
- 4. WT haunch.
- 5. New 1/2"-minimum stiffener plates each side.
- Haunch welds, see Sections 6.4.2.3 and 6.4.2.4, QC/QA category AH/T.
- 7. Stiffener CJP welds; see Sections 6.4.2.3 and 6.4.2.4, QC/QA Category BM/T.
- Stiffener fillet welds, 5/16" minimum. QC/QA Category CL/L.





Thank You!

Review Chapter 5 of the Prestandard for general agreement with approaches developed for acceptance criteria by the FEMA/SAC Steel Project

Review particular values for acceptance criteria for moment frames for agreement with those contained in the FEMA/SAC recommendations

Review SAC testing and investigations for input to acceptance criteria for other steel systems, connections or joints (e.g., gravity connections, welds, bolted connections)

Review the FEMA/SAC reliability framework to assess its future application to the Prestandard

