ASCE 41-13 Performance Based Seismic Evaluation and Retrofit of Existing Buildings

Robert Pekelnicky, PE, SE Degenkolb Engineers, San Francisco

Existing Building Tools

- 0.75*1976 UBC
- ATC 3-06
- ATC 14
- FEMA 178 → 310 → ASCE 31-03
 Evaluating Existing Buildings
- FEMA 273 → 356 → ASCE 41-06
 "Rehabilitation" of Existing Buildings
- ASCE 41-13
 Evaluating and "Retrofit" of Existing Buildings

Overview of the New Standard

ASCE 41-13

Chapter 1 **General Requirements** Chapter 2 Seismic Performance Objectives and Ground Motions Chapter 3 **Evaluation and Retrofit Requirements** Chapter 4 Tier 1 Screening Chapter 5 Tier 2 Deficiency-Based Evaluation and Retrofit Chapter 6 Tier 3 Systematic Evaluation and Retrofit Chapter 7 Analysis Procedures and Acceptance Criteria Chapter 8 Foundations and Geologic Site Hazards Chapter 9 Steel Chapter 10 Concrete Chapter 11 Masonry Chapter 12 Wood and Cold-Formed Steel Chapter 13 Architectural, Mechanical, and Electrical Components Chapter 14 Seismic Isolation and Energy Dissipation Chapter 15 System-Specific Performance Procedures Chapter 16 Tier 1 Checklists Appendix A Guidelines for Deficiency-Based Procedures Appendix B Use of ASCE 41-13 within Mitigation Programs

General Provisions

The Old

ASCE 31-03

- Two Performance Levels Life Safety & Immediate Occupancy
- One Seismic Hazard (2/3)*MCE
- Buried within the acceptance criteria is a factor of 0.75, which is intended to give existing buildings a "break"

ASCE 41-06

- Three Performance Levels Collapse Prevention, Life Safety & Immediate Occupancy
- Performance ranges between levels
- Two Seismic Hazard 10%/50 or (2/3)*MCE and MCE
- No break for existing buildings
- Basic Safety Objective ≈ Performance of Occupancy Category II

The New

<u>New Design Equivalent Hazards – No "Break"</u>

BSE-2N is the ASCE 7-10 MCE_R

BSE-1N is 2/3*ASCE 7-10 MCE_R

Existing Building Hazards – the "Break"

BSE-2E is the 5% in 50-year (975-year)

BSE-1E is the 20% in 50-year (225-year)

BSE-2E and BSE-1E cannot be greater than the BSE-2N and BSE-1N

In SF, San Jose, parts of LA, and Oakland this means no force reduction for existing buildings

USGS Home Contact USGS Search USGS

Contact Us

Staff List

Home

Geologic Hazards Science Center

EARTHQUAKES

LANDSLIDES

GEOMAGNETISM

Seismic Design Maps & Tools

US Seismic Design

Maps

Use the Tool

Documentation & Help

Java Ground Motion Parameter Calculator

Download the Tool

Documentation & Help

Worldwide Seismic Design Values

Use the Tool

Documentation & Help

U.S. Seismic Design Maps

Please note that the most recent design code(s) (e.g., 2012 International Building Code) may not yet govern in your municipality. If you are unsure of which document is currently enforced in your area, please consult your local building or transportation official before using this application.

EARTHQUAKES	LANDSLIDES	GEOMAGNETISM
Earthquakes	Research	
Hazards	Advisories	
Learn	Monitoring	

Sacramento Example

New Design Equivalent Hazards - No "Break"

BSE-2N is 0.87

BSE-1N is 0.58

Existing Building Hazards - the "Break"

BSE-2E is 0.66

BSE-1E is 0.44

San Francisco Example

New Design Equivalent Hazards - No "Break"

BSE-2N is 1.50

BSE-1N is 1.00

Existing Building Hazards - the "Break"

BSE-2E is 1.48

BSE-1E is 0.99

New Structural Performance Levels & Ranges

'06 Nonstructural Performance Levels

Operational

Immediate Occupancy

Life Safety

Hazards Reduced

Not Considered

Nonstructural Performance Levels

Operational

Position Retention

Life Safety

Not Considered

ASCE 7 *I_p* = 1.5

ASCE 7 $I_{p} = 1.0$

Actually can seriously injure or kill

Basic Performance Objective for Existing Buildings - BPOE

				Tier 3BSE-1EBSE-2ELife SafetyCollapseStructuralPreventionPerformanceStructuralLife SafetyPerformance		
	Tier 1	Tier 2	Tier 3			
Risk Category	BSE-1E	BSE-1E	BSE-1E	BSE-2E		
I & II	Life Safety Structural Performance Life Safety Nonstructural Performance (3-C)	Life Safety Structural Performance Life Safety Nonstructural Performance (3-C)	Life Safety Structural Performance Life Safety Nonstructural Performance (3-C)	Collapse Prevention Structural Performance Nonstructural Performance Not Considered		
	Damage Control Structural Performance Position Retention Nonstructural Performance (2-B)	Damage Control Structural Performance Position Retention Nonstructural Performance (2-B)	Damage Control Structural Performance Position Retention Nonstructural Performance (2-B)	Limited Safety Structural Performance Nonstructural Performance Not Considered (4-D)		
IV	Immediate Occupancy Structural Performance Position Retention Nonstructural Performance	Immediate Occupancy Structural Performance Position Retention Nonstructural	Immediate Occupancy Structural Performance Position Retention Nonstructural	Life Safety Structural Performance Nonstructural Performance Not		

Basic Performance Objective Equivalent to New Building Standards - BPON

	Tie	er 3
Risk Category	BSE-1N	BSE-2N
&	Life Safety Structural Performance	Collapse Prevention Structural Performance
	Position Retention Nonstructural Performance	Nonstructural Performance Not Considered
	(3-C)	(5-D)
III	Damage Control Structural Performance	Limited Safety Structural Performance
	Position Retention Nonstructural Performance	Nonstructural Performance Not Considered
	(2-B)	(4-D)
IV	Immediate Occupancy Structural Performance	Life Safety Structural Performance
	Operational Nonstructural Performance	Nonstructural Performance Not Considered
	(1-A)	(3-D)

Limits on Deficiency-Based Procedures

Only allowed for Model Bldg type in each direction

Limited use for mixed systems

Tier 2 now allowed for IO retrofit

Table 3-2 Limitations o	on the Use of the	Tier 1 and Tier 2	Procedures ¹
-------------------------	-------------------	-------------------	-------------------------

· ·	Number of Stories ³ beyond which							
	the Tier 3 Systematic Procedures are Required Level of Seismicity							
2	Very	Low	Lo	w	Mod	erate	Hi	gh
Common Building Type ²	S-3	S-1	S-3	S-1	S-3	S-1	S-3	S-1
Wood Frames								
Light (W1)	NL	NL	NL	4	4	4	4	4
Multi-Story, Multi-Unit Residential (W1A)	NL	NL	NL	6	6	6	6	4
Commercial and Industrial (W2)	NL	NL	NL	6	6	6	6	4
Steel Moment Frames								
Rigid Diaphragm (S1)	NL	NL	NL	12	12	8	8	6
Flexible Diaphragm (S1A)	NL	NL	NL	12	12	8	8	6
Steel Braced Frames								
Rigid Diaphragm (S2)	NL	NL	NL	8	8	8	8	6
Flexible Diaphragm (S2A)	NL	NL	NL	8	8	8	8	6
Steel Light Frames (S3)	NL	1	1	1	1	1	1	1
Dual Systems with Backup Steel Moment Frames (S4)	NL	NL	NL	12	12	8	8	6
Steel Frames with Infill Masonry Shear Walls								
Rigid Diaphragm (S5)	NL	NL	NL	12	12	8	8	4
Flexible Diaphragm (S5A)	NL	NL	NL	12	12	8	8	4
Concrete Moment Frames (C1)	NL	NL	NL	12	12	8	8	6
Concrete Shear Walls								
Rigid Diaphragm (C2)	NL	NL	NL	12	12	8	8	6
Flexible Diaphragm (C2A)	NL	NL	NL	12	12	8	8	6
Concrete Frame with Infill Masonry Shear Walls								
Rigid Diaphragm (C3)	NL	NL	NL	12	12	8	8	4
Flexible Diaphragm (C3A)	NL	NL	NL	12	12	8	8	4
Precast/Tilt-up Concrete Shear Walls								
Flexible Diaphragm (PC1)	NL	NL	3	2	2	2	2	2
Rigid Diaphragm (PC1A)	NL	NL	3	2	2	2	2	2
Precast Concrete Frames								
With Shear Walls (PC2)	NL	NL	NL	6	6	NP	4	NP
Without Shear Walls (PC2A)	NL	NL	NL	6	6	NP	4	NP
Reinforced Masonry Bearing Walls								
Flexible Diaphragm (RM1)	NL	NL	NL	8	8	8	8	6
Rigid Diaphragm (RM2)	NL	NL	NL	8	8	8	8	6
Unreinforced Masonry Bearing Walls								
Flexible Diaphragm (URM)	NL	NL	6	4	6	NP	4	NP
Rigid Diaphragm (URMA)	NL	NL	6	4	6	NP	4	NP

¹The Tier 3 Systematic procedures are required for buildings with more than the number of stories listed herein.

²Common Building Types are defined in Section 3.2.1.

³Number of stories shall be considered as the number of stories above lowest adjacent grade.

NL = No Limit (No limit on the number of stories).

NP = Not Permitted (Tier 3 Systematic procedures are required).

Current Issues

Reality

Greatest Impediments

It's too @*\$% Conservative!

Greatest Impediments

DCR = 0.99 => Life Safe

DCR = 1.06 => Not Life Safe

Deterministic Standard for a Probabilistic Phenomena

Possible Future Directions

"Consistency"

Probability Of Achieving a Performance Level

Immediate Occupancy

90% in BSE-1N

75% in BSE-1N

Collapse Prevention

97% in BSE-2N

94% in BSE-2N

50% in BSE-1N

90% in BSE-2N

Probability Of Achieving a Performance Level

Immediate Occupancy

90% in BSE-1N

75% in BSE-1N

Collapse Prevention

97% in BSE-2N

94% in BSE-2N

50% in BSE-1N

90% in BSE-2N

Reduce the "false positives"

ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings

Your Thoughts & Questions?