Progress on the Development of Generation-2 Fragility Relationships for California Bridges

Phase-1: Feasibility Studies(2010-2012)Phase-2: Production - Concrete Bridges(2013-2017)

Presented By: Cliff Roblee, Caltrans Project Manager

Research Team

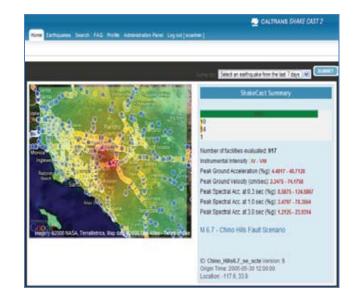
Pl's:	Reginald DesRoches, Georgia Tech
	Jamie Padgett, Rice University

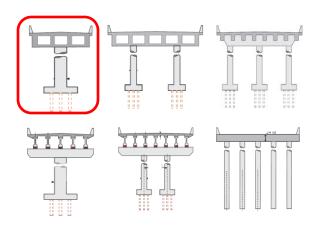
- Phase 1: Karthik N. Ramanathan Jazalyn Dukes
- Phase 2: Farahnaz Soleimani Sujith Mangalathu Sivasubramanian Pillai Jong-Su Jeon

Northridge20 Symposium at UCLA, Transportation Systems Session January 17, 2014

g2 Bridge Fragility: Project Background

Need:

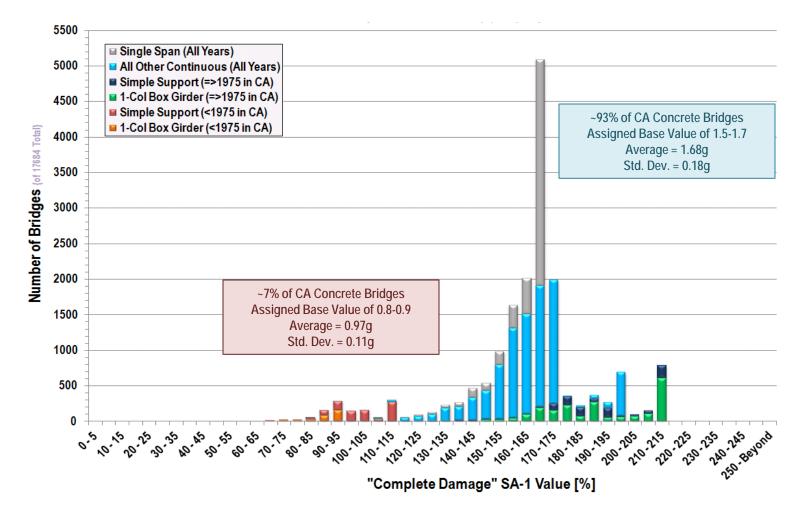

- Caltrans Uses ShakeCast to Support Post-Earthquake Response
- ShakeCast Currently Uses HAZUS-Based Fragility (Early 1990's)
- HAZUS Taxonomy is Coarse & Not Optimized for CA Bridge Types


Goals:

- Phase 1: Demo Feasibility & Value of Improving Fragility Models
- Phase 2: Production Fragility Models for Most Concrete Bridge Types

Benefits:

- Improved Rapid Predictions of Earthquake Damage
- CT: Improved Situational Awareness and Decision-Making
- Public: Faster & More Effective Emergency Response


	HAZUS Frag	gility Models		Approx. % of
Description	Conventional (<1975 in CA)	Seismic (>=1975 in CA)	"Complete" Damage State	Concrete Bridges in CA
Single Span	HWB3, Eq1, 1	HWB4, Eq1, 1	1.70 "	26%
Simple Support	HWB6/18, Eq1, 0	HWB7/19, Eq1, 0	0.90	5% 5%
Cont. Single-Col Box Girder	HWB8/20, Eq2, 0	HWB9/21, Eq3, 0	0.80	2% 11%
All Other Continuous	HWB10/22, Eq2, 1	HWB11/23, Eq3, 1	1.50 "	51%

HAZUS Fragility: Current Fragility Assignments in ShakeCast

HAZUS "Complete Damage" SA-1 Median = Base Value * Skew Factor * 3D Factor

Skew: (Factor varies from 1.0 to 0.7 as skew varies 0 to 60 degrees)

3-D: (Factor varies from 1.0 to 1.33 with higher values for fewer spans)

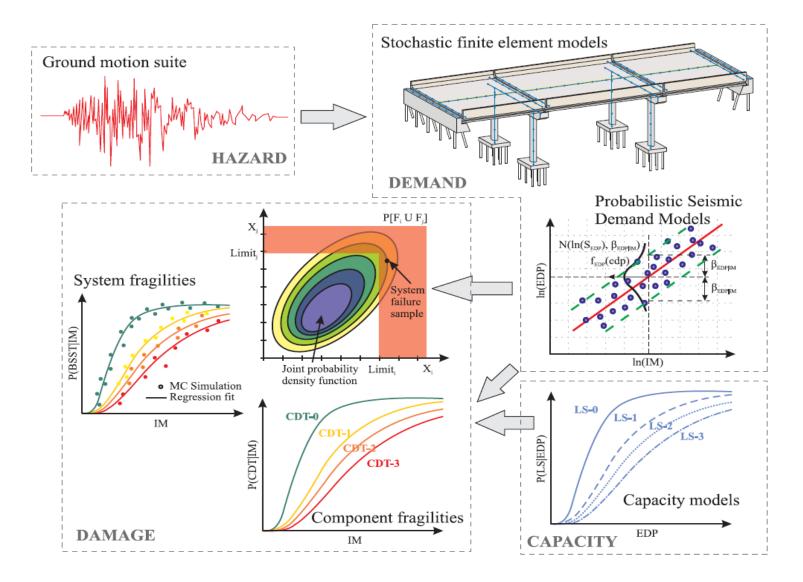
g2 Bridge Fragility: Opportunities for Improvement

Analytical Methodology:

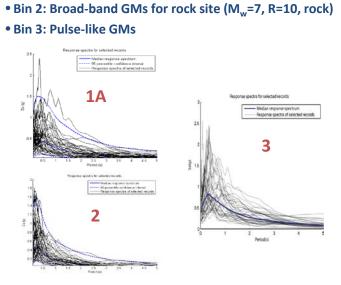
- Allows explicit consideration of engineering demand parameters meaningful to bridge designers
- Allows consistent in-depth exploration of bridge systems / details where little empirical data is available

Component & System Fragility:

- Highlight components (e.g. columns, hinges, bearings, restrainers, etc.) for inspectors where greatest damage expected
- Combine components to have common performance implications (i.e. traffic state, emergency repairs)
- Supports future enhancements for rapid cost estimation, traffic modeling, and transportation-network planning

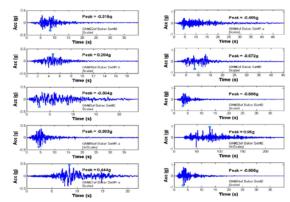

CA Centric:

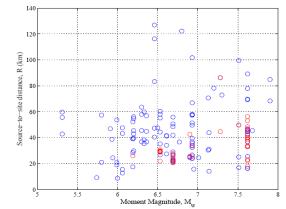
- MOTIONS: Designed for CA hazard levels and GM metrics
- BRIDGE SYSTEMS: Customize for common CA bridge classes / subclasses
- INFORMATION RESOURCES: Utilize available bridge information assets unique to CA


Finer Bridge Taxomomy:

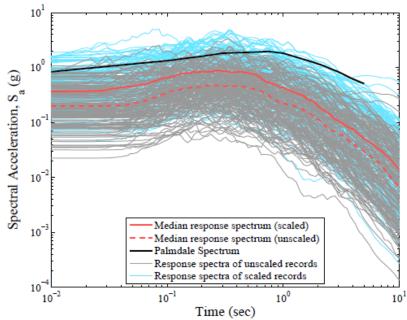
- CONVENTIONAL BRIDGE CLASSES: More systems/combinations (e.g. tee-girder on MC bent vs. on pile extensions)
- SEISMIC PERFORMANCE SUBCLASS: Additional factors thought to influence seismic performance (e.g. skew, curve, balance)

g2F Methodology: Overview


g2F Methodology: Ground Motions


Baker et al. (2011) - PEER Transportation Research

Bin 1A: Broad-band GMs for soil site (M_w=7, R=10, soil)
 Bin 1B: Broad-band GMs for soil site (M_w=6, R=25, soil)


Sample of 10 of 160 Time Histories

Magnitude – Distance Distribution

Ensemble of Spectra (160 Unscaled & 160 Scaled Motions)

g2F Methodology: Stochastic Bridge Models

Define Bridge Class/Subclass

Review Plans/Design Guides to Establish Class Design Basis

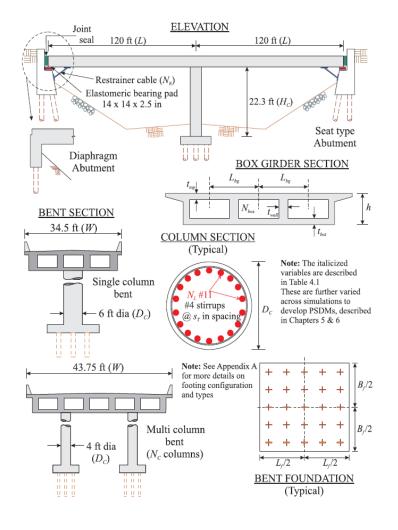


Table 5.1: Distributions for longitudinal and transverse reinforcement ratios in bridge columns

Bridge class	Design era	Longit reinforo rat	ement	reinfor	sverse cement tio
		u_l^*	u_2^*	u_l^*	u_2^*
	Pre 1971	1.4	2.4	N.A.	N.A.
MSCC-BG	1971-1990	1.0	3.7	0.30	0.90
	Post 1990	1.0	3.5	0.40	1.70
	Pre 1971	1.08	3.61	N.A.	N.A.
MSCC-IG	1971-1990	1.18	5.31	0.31	1.07
	Post 1990	1.49	5.35	0.31	1.61
	Pre 1971	1.08	3.61	N.A.	N.A.
MSCC-TG	1971-1990	1.18	5.31	0.31	1.07
	Post 1990	1.49	5.35	0.31	1.61

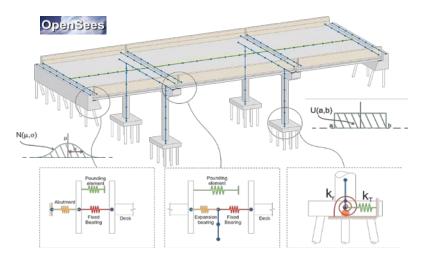
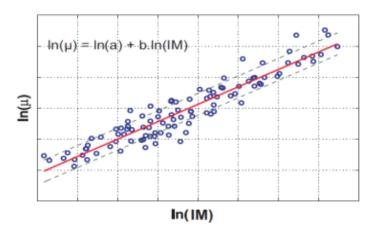
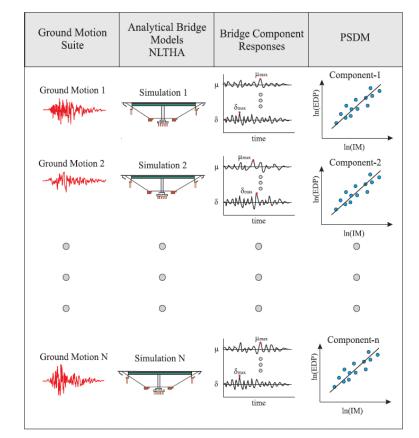

 u_1, u_2 are the parameters describing a uniform distribution representing lower and upper bounds.

Table 4.1: Deterministic	hridge mode	attributes for	MSCC single	frame hox-	oirder bridges
Table 4.1. Deterministic	offuge mode.	and founds for .	moce single	manic ook-	gnaci onages


		~			· ·		~	0			
Attributes	Pre 1	1971		1971-	1990			Po	ost 1990		
	SCB	MCB	SCB		MCB		SCB		M	В	
Column details											
Number per bent (N_C)	1	2	1	2	3	4	1	2	3	4	5
Column height (ft) (H_c)	22.3	22.3	22.3	22.3	22.3	22.3	22.3	22.3	22.3	22.3	22.3
Diameter (ft) (D_c)	6	4	6	5	5	5	6	5	5	5	4
Longitudinal reinforcement (#11 bars) (NL)	50	22	62	44	44	44	58	42	42	42	26
Transverse reinforcement spacing (in)	12.0	12.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
(#4 stirrups) (s _T)											
Superstructure details											
Span length (ft) (L)	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0
Deck width (ft) (W)	34.5	43.75	35.25	43.75	90.0	110.0	35.25	43.75	70.0	90.0	127.5
Box-girder details											
Number of boxes (N _{box})	3	5	3	5	9	11	3	5	7	9	15
Total superstructure depth (in)* (h)	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	57.6	9 57.6	57.6
Top flange depth (in) (t_{top})	8,875	7.875	8 875	7.875	8 375	8 375	8 875	7 875	8 375	8.375	8,375
Bottom flange depth (in) (t_{top})	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.0	7.0	7.0	7.0
Wall thickness (in) (t_{wall})	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
	12.0	8.75	11.75	8.75	12.0	12.0	11.75	8.75	12.0	12.0	8.5
Cell center-to-center spacing (ft) (L_{bg})	10	12	10	12	20	32	10	12	20	26	8.5 34
Number of restrainers (N_R)	10	12	10	12	20	32	10	12	20	20	54
Column footing details – Spring stiffnesse	×5										
Translational (kip/in)	1700	800	1400	1200	1200	1200	1400	1200	1200	1200	800
Rotational (kip-in/rad)	7										0
	4.1×10^{7}	0	6.5×10 ⁷	0	0	0	6.5×10 ⁷	0	0	0	0

g2F Methodology: Analysis for Demand Models


Non-Linear Time-History Analysis

Seismic Demand Model (1 Per Component Response)

Stochastic Method

g2F Methodology: Phase-1 Damage State Framework

DOOT 4

DOOTO

Damage State Criteria

	BS	ST-0 BS	ST-1 BS	ST-2 BS	ST-3
ShakeCast Inspection Priority Levels	None ¹	Low	Medium	Medium-High	High
Bridge System States ²	BSS-0	BSS-1	BSS-2	BSS-3	BSS-4
("Inspecting for possible")	No Bridge Damage	Slight Bridge Damage	Moderate Bridge Damage	Extensive Bridge Damage	Complete Bridge Damage
Component Damage Range ³					
Primary Components ⁴	Below CDT-0	CDT-0 to CDT-1	CDT-1 to CDT-2	CDT-2 to CDT-3	Above CDT-3
Secondary Components ⁵	Below CDT-0	CDT-0 to CDT-2	Above CDT-2	na	na
Likely Immediate Post-Event	Open to Normal Public Traffic -	Open to Normal Public Traffic -	Open to Limited Public Traffic -	Emergency Vehicles Only -	Closed (Until Shored/Braced) -
Traffic State	No Restrictions	No Restrictions	Speed/Weight/Lane Restrictions	Speed/Weight/Lane Restrictions	Potential for Collapse
Traffic Operations Implications ⁶					
Closure/Detour Needed?	Very Unlikely	Very Unlikely	Unlikely	Likely	Very Likely
Traffic Restrictions Needed?	Very Unlikely	Unlikely	Likely	Very Likely	Very Likely - Detour
Emergency Repairs Implications ⁶					
Shoring/Bracing Needed?	Very Unlikely	Very Unlikely	Unlikely	Likely	Very Likely
Roadway Leveling Needed?	Very Unlikely	Unlikely	Likely	Very Likely	Very Likely - Detour
Talla annual called al lance allow and all all day					

Components Considered

Primary Components (Affects ALL System States)

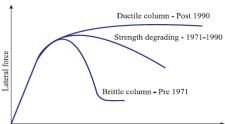
- a) Columns
- b) Joint Seat/Gap Combinations

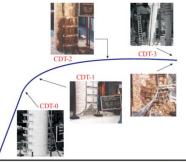
Secondary Components (Affects LOWER System States)

- a) Joint Seals
- b) Bearings
- c) Restrainers

General Distress Indicators (Like Secondary w/o Damage Model)

- a) Overall Bridge Response @ Deck Level
- b) Foundation Response
- c) Abutment Response

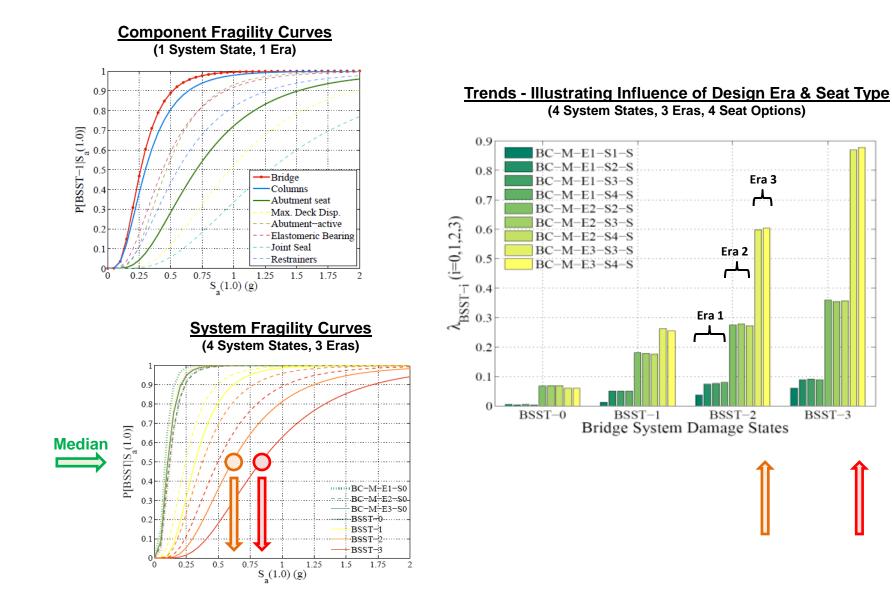

OVERALL BRIDGE SYSTEM


Example for Columns:

Component								
Performanc	Performance		Component Damage Threshold			eshold	Lognormal Dispersion	
Group	Group Common Name	Parameter for CDT's	CDT-0	CDT-1	CDT-2	CDT-3	Value	+2σ/μ Ratio
Columns		Curvature Ductility ($\mu \phi$)						
DU	Ductile Column		1.0	4.0	8.0	12.0	0.35	2.0
SD	Strength-Degrading Column		1.0	2.0	3.5	5.0	0.35	2.0
BR	Brittle Column ¹		0.8	0.9	1.0	1.2	0.35	2.0

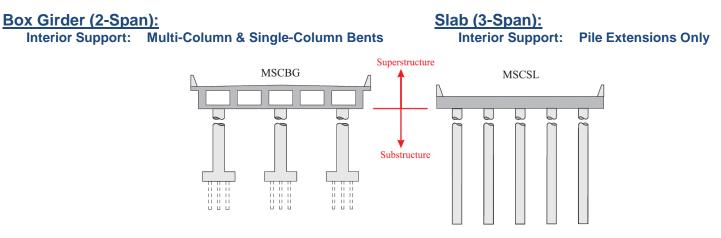
orce

DOOTO

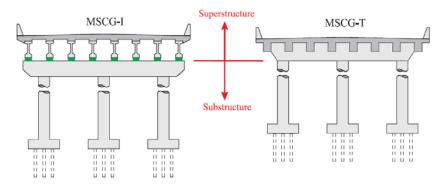


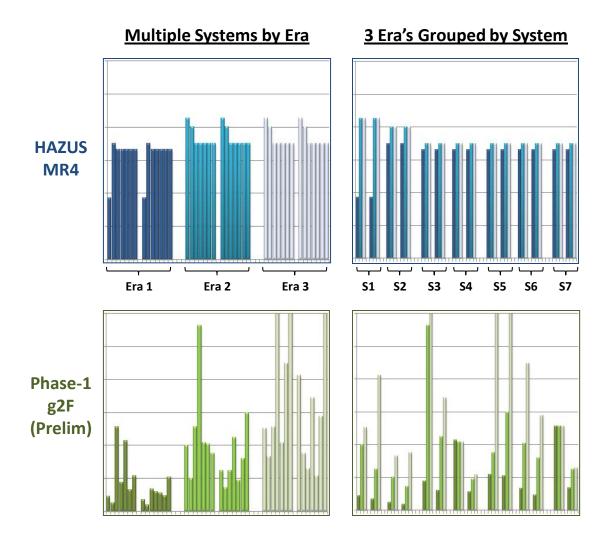
DOOT O

Displacement


g2F Methodology: Example Outputs

Phase-1 Feasibility Study: Systems Considered


Abutment Types: Diaphragm; Seat (4 Widths, 2 Gaps) **Design Eras:** E1 (pre-1971); E2 (1971-1991); E3 (post-1991)


I-Girder (3-Span):

Interior Support: Multi-Column & Single-Column Bents

T-Girder (3-Span): Interior Support: Multi-Column Bent & Pile Extensions

Ph-1 Results: Preliminary Trends for Different Bridge Systems & Eras

All results shown are for "Complete Damage" state and zero skew.

KEY OBSERVATIONS

- HAZUS treats most¹ continuous concrete bridge systems as essentially the same class:
 - Design Era (pre-1971, 1971-1991, post-1991)
 - Design Type (box-girder, tee-girder, I-girder, slab)
 - Subsystems (abutment, interior support)
- g2F numbers are preliminary, but general trends regarding variability are valid:
 - Numbers will certainly change as capacity models are revised in Phase-2
 - May be refinements to bridge classes/sub due to g2F taxonomy revisions
 - May be refinements to assumptions/details of bridge models used in Phase-1 NLTHA
 - Trends based on consistent and thorough methodology

• Phase-1 g2F vs. HAZUS:

- g2F shows much greater increase in resiliency with design era² (say >4x)
- g2F shows much greater variability between systems/sub within same era (also say 4x)

² Exception are systems supported by pile extensions which were assumed to have the same capacity model for all eras.

¹ Pre-1975 single-column box girder treated as much different system by HAZUS

g2F Project: Transition to Phase 2

Key Outcomes from Phase-1:

- Feasibility of overall methodology was successfully demonstrated for simple bridge systems.
- ID'ed significant potential for improved fragility models using more granular g2F taxonomy.
- Challenges exist for classifying bridges using available information resources (w/o plan review).
- Capacity models need to be refined/optimized.

Initial Directions for Phase-2:

- Refine g2F bridge taxonomy:
 - a) Develop basis of elements *thought to be important* to seismic bridge performance
 - b) ID elements that can be assigned using existing/emerging information assets
- Conduct sensitivity studies:
 - a) ID elements *demonstrated to be important* to performance (unique and significant effect)
 - b) Optimize computational workplan (combine PSDM's as possible)
 - c) Anticipate deployable form (base models and adjustment factors)

Emerging g2F(alpha) Taxonomy: Background

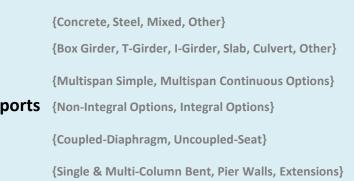
Form:

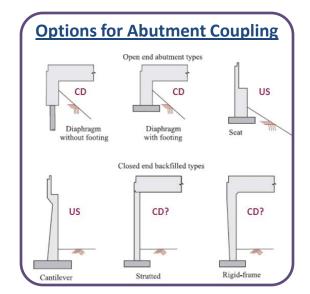
- Two Code Strings: CBC (~6-7 Elements) & SPS (~6-9 Elements)
- Each Element Thought to Contribute to Seismic Performance of Class (Know More as Project Progresses)
- Confidence Metric for Each Element Assignment and for Overall Code

Generation-2 Fragility (g2F) Taxonomy Summary	Code Confidence Metrics						
Generation-2 Fraginty (q21) Faxonomy Summary	Code	Code Component (3 max each)	Completeness [%] Combined Index (3 max)				
Conventional Bridge Class (CBC)	M-CG-TG-MU-Xx-CD-MB	3-3-3-1-1-2-3					
Seismic Performance Subclass (SPS)	X-X-X-X-X-X-X-X-X	0-0-0-0-0-0-0-0-0					

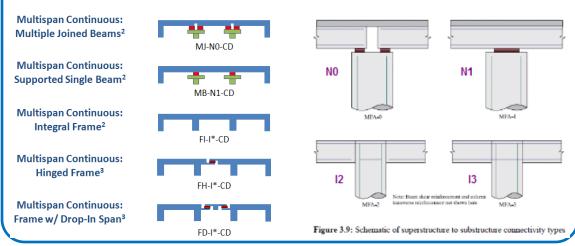
Data Sources:

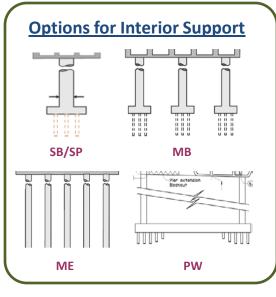
- SMART (NBI+ Parameters, Structure Description, etc.)
- ELI Elements (Counts of Columns, Seals, Bearings, etc.)
- Joint Data (Location, Movement Rating, etc.)
- Yashinsky DB (Retrofit Years, STRAIN Vulnerabilities, etc.)
- ARS Online (Estimate of Design Ground-Motion)
- Other


<u>Uses</u>:


- Counts ID Most Common Systems & Realistic Combinations
- Look Up Plans Create Bridge Lists Sampled Randomly to Capture Class/Sub Statistics for Modeling
- ShakeCast Assignment of g2F Models (NOTE: Multiple Taxonomy Subclasses May Be Assigned Same Fragility Model)
- Confidence Metrics Used To:
 - Aid ShakeCast Assignment ID Bridges Needing Plan Review
 - Quantify Information Needs (Along with Importance Informed by Sensitivity Study)
 - Track Information Quality Over Time (As Improvements Incorporated)

Emerging g2F(alpha) Taxonomy: CBC Elements


Elements of Conventional Bridge Class (CBC):


- Span Range
- Bridge Material {Concrete, Steel, Mixed, Other}
- Bridge Type
- Bridge System
- Connectivity @ Supports
- Abutment Coupling
- Interior Support

Options for 'Multispa Continuous' Bridge System & Connectivity

Emerging g2F(alpha) Taxonomy: SPS Elements

Elements of Seismic Performance Subclass (SPS):

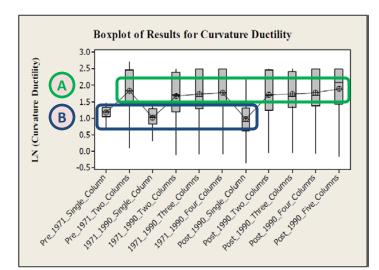
• Seismic Code Era	{E1: pre-1971, E2: 1971-1991, E3: post-1991}
 Support Ductility 	{Brittle, Strength Degrading, Ductile}
 Seat Width (Abut, Joint) 	{S0: None, S1: <12", S2: 12"-18", S3: 18"-24", S4: >24"}
• Joint Gap	{None, Small: MR <= 2", Large: MR >2"}
 Design Motion 	{Low: SA1 <0.3g, Moderate: 0.3g-0.75g, High: >0.75g}
• Skew	{Low: <15 deg, Moderate: 15-30 deg, High: >30 deg }
 Curved Bridge 	{TBD – Flag Y/N or Curvature Based}
 Balanced Frame 	{TBD – Flag Y/N}
 STRAIN Vulnerabilities 	{TBD – Grouped by SCORE Rating}

Ph-2 Challenge: Balanced Model Granularity

Bridge Information Constraints:

- Unusual Bridge
- Insufficient or Conflicting Information

			g2F Bridge Material						
		Conc	<u>rete</u>	<u>Ste</u>	<u>el</u>	Misc./I	Mixed M	aterials	Total by
g2F Bridge T	ype	CG	MC	SG	MS	MD	от	UK	Туре
<u>Main Types</u>									
Box Girder	BG	7839	163	23	0	3	0	0	8028
Tee Girder	ΤG	2901	14	0	0	0	0	2	2917
l Girder	IG	1015	52	2133	4	8	539	0	3751
Slab	SL	5703	35	15	0	6	20	3	5782
Culvert	CV	3307	0	264	0	3	9	10	3593
Misc. Types	MX	180	323	70	4	262	28	1	868
	от	351	0	252	0	1	51	38	693
	NC	265	10	37	1	9	13	0	335
Error Types	UK	33	0	18	0	1	4	52	108
	ER	8	0	1	0	0	0	0	9
Main Types	Total:	20765	264	2435	4	20	568	15	24071
Total by Mat	terial:	21602	597	2813	9	293	664	106	26084

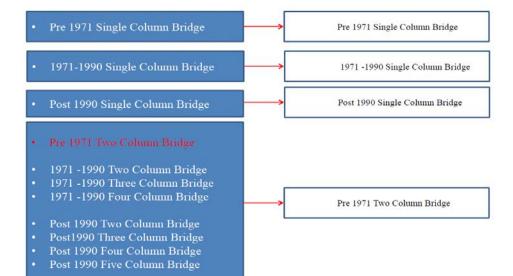

	Interior Support	Simple Supp (all Spans)	Unjointed (FI, MJ, MB)
		MS	MU
	NA3	0	0
	NA2	0	0
	NA1	0	0
	SB3	3	583
	SB2	0	193
	SB1	0	36
	SP3	0	19
	SP2	0	0
	SP1	0	47
	PW3	0	124
	PW2	4	212
	PW1	1	67
	MB3	11	2433
	MB2	1	48
	MB1	4	172
	ME3	0	5
	ME2	0	0
	ME1	0	6
	OTHER	1118	7
Total by S	System:	26	5063

Model Complexity:

- Importance of class element (toward isolating *distinct* response ... within other uncertainties)
- Handling in model: BSSTx = Base Value for Class/Subclass * Adjustment Factors (Class/Global)

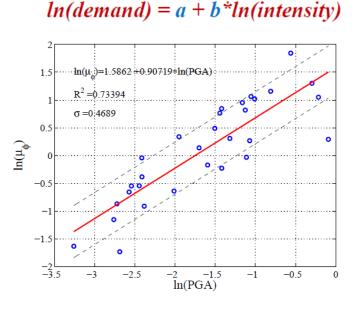
Scenario	Is Element Important?	Can Element Be Assigned?	Action
Α	Yes	Yes	Incorporate into g2F models
В	Yes	No	Incorporate capability into g2F models, and provide model for current uncertainty
С	No	Yes/No	Remove from g2F models (may or may not retain in taxonomy)

GT Sensitivity Study Example: 2-Span Box Girder – Diaphragm Abutments


Grouping Based on Column Ductility Only

Level	Number of observations (N)	Mean value (µ)	G A by Fis	cher MB
Post_1990_Five_Columns	25	6.606	A	
Pre_1971_Two_Columns	24	6.246	A	
1971_1990_Four_Columns	26	5.859	A	
Post_1990_Four_Columns	27	5.830	А	
Post_1990_Three_Columns	26	5.686	А	
1971_1990_Three_Columns	27	5.607	A	
Post_1990_Two_Columns	26	5.485	А	
1971_1990_Two_Columns	27	5.349	А	
Pre_1971_Single_Column	21	3.222		В
1971_1990_Single_Column	23	2.773		В
Post_1990_Single_Column	28	2.659		В

Considering All EDP's (Same Method)


- * Foundation Translation
- * Foundation Rotation
- Mean Value of bridge configuration is same for
 - Deck Displacement
 - * Abutment Passive
 - ***** Abutment Active
 - * Abutment Transverse

Overall Grouping (Considering All EDP's)

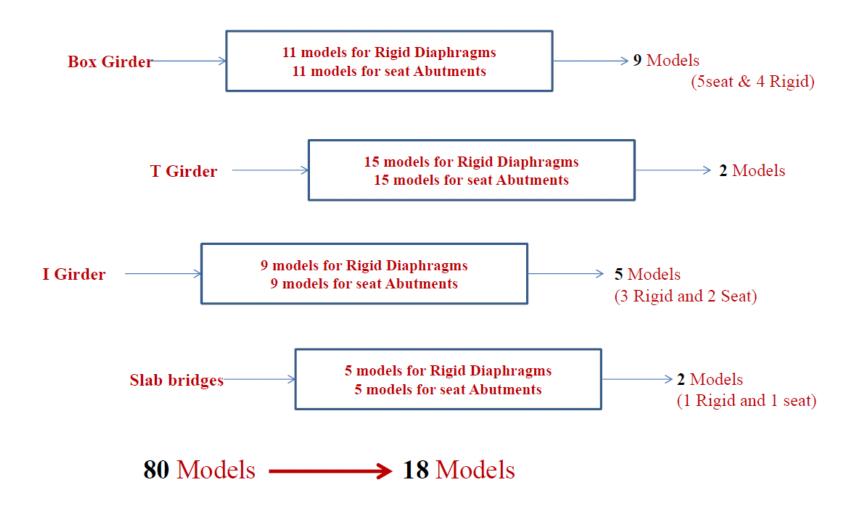
Current ANOVA study states that 4models (one from each box) are enough to calculate the demand models instead of 11 models

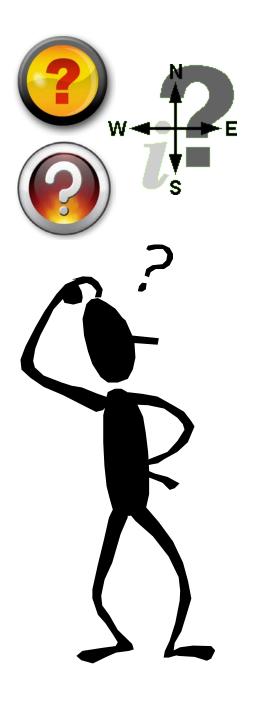
GT Sensitivity Study Example: 2-Span Box Girder – Diaphragm Abutments

Sanity Check – Compare PSDM Coefficients

(A)

PSDM curve for 1971-1990 Single column bridge


Column ductility	Regression coefficient		
	a	Ь	
Pre 1971 Two Column	2.587	1.1428	
1971 - 1990 Two Column	2.182 2.235	1.1385 1.1333	
Post 1990 Two Column			
1971-1990 Three Column	2.212	1.1159	
Post 1990 Three Column	2.284	1.1191	
1971-1990 Four Column	2.342	1.1185	
Post 1990 Four Column	2.320	1.1384	
Post 1990 Five Column	2.498	1.0999	
Column ductility	Regression	n coefficient	


	Column ductility	Regression coefficient	
		а	b
B	Pre 1971 Single Column	1.6308	0.8479
()	1971-1990 Single Column	1.4334	0.9148
	Post 1990 Single Column	1.8530	1.5154

Interpretation

- Only considering demand models here There will be more fragility models once combined with capacity models for different eras.
- Single-column vs. multi-column bents clearly show distinct performance for *column ductility* demand. The effect of 'design era' has little effect on PSDM for 2-span case, especially for multi-column models.
- Chose to refine single-column models based on consideration of secondary EDP's (i.e. foundation translation/rotation).

GT Sensitivity Study: Proposed PSDM Groups (2-3 Span Only)

Stay Tuned!

Questions?

