OUTLINE

- Overall Project Goal
- What is the Vision of CEA/FEMA
- Past Residential Damage
- Typical Deficiencies
- Prescriptive vs. Engineered Approach
- What we have now ... Codes, Standards and Plan Sets
- Next Steps
OVER-ARCHING GOAL

- National Pre-Standard and eventually Standard which will specifically address the seismic rehabilitation of one and two family residential dwellings (R3)
ATC -110 PROJECT TEAM

Project Technical Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colin</td>
<td>Blaney</td>
<td>ZFA</td>
</tr>
<tr>
<td>John</td>
<td>Osteraas</td>
<td>Exponent</td>
</tr>
<tr>
<td>Kelly</td>
<td>Cobeen</td>
<td>WJE</td>
</tr>
<tr>
<td>Andre</td>
<td>Filiatrault</td>
<td>SUNY Buffalo</td>
</tr>
<tr>
<td>Tom</td>
<td>Anderson</td>
<td>Anderson Niswander Constr.</td>
</tr>
<tr>
<td>Frank</td>
<td>Rollo</td>
<td>Treadwell & Rollo</td>
</tr>
<tr>
<td>Ramin</td>
<td>Golesorkhi</td>
<td>Treadwell & Rollo</td>
</tr>
</tbody>
</table>
ATC-110 PROJECT TEAM

Project Steering Committee

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>Bonowitz</td>
<td>Consultant</td>
</tr>
<tr>
<td>Dan</td>
<td>Dolan</td>
<td>Washington State</td>
</tr>
<tr>
<td>David</td>
<td>Khorram</td>
<td>City of Long Beach</td>
</tr>
<tr>
<td>Vikki</td>
<td>Bourcier</td>
<td>Hobach-Lewin</td>
</tr>
<tr>
<td>Philip</td>
<td>Line</td>
<td>APA</td>
</tr>
<tr>
<td>Steve</td>
<td>Pryor</td>
<td>Simpson</td>
</tr>
<tr>
<td>Thor</td>
<td>Matteson</td>
<td>Consultant</td>
</tr>
</tbody>
</table>
WHAT IS THE VISION OF THE CEA/FEMA SEISMIC RETROFIT STANDARD?

- National Standard to Address most Residential Construction
 - Cripple Wall Buildings
 - Slabs on Grade
 - Pole Type Foundations, Pier and Beam Systems
 - Hillside Homes
 - House over Garages
WHAT IS THE VISION OF THE CEA/FEMA SEISMIC RETROFIT STANDARD?

- Focus on Prescriptive Approaches
 - Embed the Engineering
 - Make Implementation Simple & Effective
WHAT IS THE VISION OF THE CEA/FEMA SEISMIC RETROFIT STANDARD?

- Streamline an Engineered Approach
- Create Design Tools and Detail Libraries to assist Engineers.
WHAT IS THE VISION OF THE CEA/FEMA SEISMIC RETROFIT STANDARD?

➢ To Answer other important Questions
 ➢ When does a certain vulnerability become an elevated concern?
 ➢ When does the slope of a particular site warrant additional design or rehabilitation measures
 ➢ Can the rehabilitation of Hillside Homes follow prescriptive Standards.
 ➢ How do we address the variance of construction practices
WHAT IS THE VISION OF THE CEA/FEMA SEISMIC RETROFIT STANDARD?

- To Address other important Goals
 - Can we develop a better idea of expected drift, the onset of damage and possible collapse for specific structures types and materials.
 - Cost to Benefit Indicators for Retrofits
PAST RESIDENTIAL DAMAGE

1983 Coalinga Earthquake - M 6.3

- Almost destroyed - 309 single-family homes
- Major damage - 558 single-family homes
- Minor damage - 811 single-family homes

1. A disaster assessment by the American Red Cross
1989 Loma Prieta Earthquake -M 6.9

- Older homes that were not bolted to their foundations or which lacked properly braced cripple walls accounted for over 2,800 of the 16,000 or 17.5% of all housing units made uninhabitable. ¹

- In Watsonville 10-20% of all pre-1940 residences suffered cripple wall damage. Some blocks suffered nearly 100% ²

1. “Preventing the Nightmare” 2003- Report by ABAG
WHAT’S DEFICIENT?

- The lack of continuous concrete or reinforced masonry footings at the perimeter,
- Cripple walls with inadequate bracing,
- Minimal or no attachment between the floor framing and the top of cripple wall or mudsill,
- The lack of appropriate anchorage between the mudsill and foundation system.
WHAT’S REALLY DEFICIENT?

➢ Lack of redundancy below first floor
MUDSILL ATTACHMENTS
MUDSILL ATTACHMENTS
CRIPPLE WALL FAILURES
INADEQUATELY SHEATHED CRIPPLE WALLS
WHAT DOESN’T WORK?

- Horizontal Wood Sheathing/Shingles
- Stucco/Plaster ?
- T1-11 Siding ?
- Let in Bracing
WHAT DOES WORK?

- Plywood
- OSB (oriented strand board)
- Diagonal Wood Sheathing
FLOOR TO CRIPPLE WALL ATTACHMENTS
FLOOR TO CRIPPLE WALL ATTACHMENTS

Movement prevented by shear transfer ties.

Photos Courtesy By Area Retrofit
FLOOR TO MUDSILL ATTACHMENTS

- floor joists
- muscles
- end joist
- framing anchors
- rim joist
- floor you walk on
- framing anchors
- foundation
WHAT DOCUMENTS DO WE HAVE

- FEMA P-50, P50.1
- IEBC A3
- Plan Set A
- City of LA - DBS Anchor Bolt Plan (2009)
- Simpson Strong-Tie
- Plan Set B ?? - (Standard Plan B)
PREScriptive STANDARDS

- Engineering Intent “Embedded”
- Developed for Specific “Most Typical Conditions”
- Use in Manner Consistent with Details
ENGINEERED SOLUTION

- Required when building falls outside of Scope (Example-A301.2)
- When the existing detailing falls outside of the “Most Typical Conditions”
- 75% of Code Design Forces
WHAT MAKES THESE DOCUMENTS DIFFERENT?

- Developed for Homeowners, Contractors, & Engineers
- Focus on “Critical Risk”
- Recipe of “Prescriptive Requirements & Details”
WHAT IS “CRITICAL RISK”

Unknown

Strengthened

January 16-17, 2014 - University of California, Los Angeles
ZFA Structural Engineers
IEBC A3 & WHERE DOES IT APPLY?

- Residential Buildings of Light Frame Construction (R-3)
- Not More than Four Dwelling Units
- 16 or fewer Primarily Permanent Occupants
- Cripple Walls Less Than 4’ in Height
WHERE DOES IEBC A3 APPLY?

- Homes with post & pier and URM Foundation Systems
- Engineering Assessment or Prescriptive Foundations
WHERE DOESN’T A3 APPLY?

- Cripple walls over 4’ in Height
- Homes with Pole Foundations
- Buildings Exceeding Three Stories in Height
- Buildings With Slabs on Grade
WHERE DOESN’T A3 APPLY?

Steinbrugge Collection EERC, UCB
Homeowner’s Guide to Earthquake Retrofit

Wall Stud Movement

Cut-Off Height

January 16-17, 2014 - University of California, Los Angeles

ZFA Structural Engineers
WHERE SHOULD YOU APPLY IEBC A3 WITH CAUTION?

- Sloping Sites
- Long - Rectangular Homes
- High Seismicity \((CS > 0.192g, SDS > 1.25)\)
- Split Levels
- Homes with Heavy Finishes
- Unusual Configurations & HOG
OTHER PRESCRIPTIVE METHODS

- Plan Set A - (Standard Plan A - 2008)
- City of LA - DBS Anchor Bolt Plan (2009)
- Simpson Strong-Tie
- Plan Set B ?? - (Standard Plan B)
January 16-17, 2014 - University of California, Los Angeles
PROS & CONS OF IEBC A3

- Pro’s
 - Adopted into the Code/ National Presence
 - Regularly Updated
 - Coordinated with Other Codes
 - Broad applicability with engineered design
 - Standardized and prescriptive details
PROS & CONS OF IEBC A3

- Con’s
 - Does not easily Produce Plans and Details
 - Not easily available
 - Limited prescriptive details
PROS & CONS OF PLAN SETS

Pro’s

- Developed for Home Owners and GC’s
- Consistent notes, detail, procedures
- Formatted for Construction
- Easy to Follow
PROS & CONS OF PLAN SETS

- **Con’s**
 - No Official Update Process
 - Limited Applicable Details/ Conditions
 - More Limited Applicability
 - No Direct Engineered Approach
CONTRIBUTORS TO SUCCESS

- Regulatory Agencies
- Embrace the Program
- Quality Control and Quality Assurance of Program
NEXT STEPS

- Review all Current Data
- Study & Define the Opportunities
- Develop & Prioritize Realistic Goals
- Implement - Anticipated 5 year Program
Thank you
1994 Northridge Earthquake- M 6.7

- 48,000 residential units made uninhabitable.

- Only 439 of the 48,000 or slightly less than 1% had cripple wall failures. \(^1\)

- Difference due to newer homes, slab on grade construction, or homes retrofitted after 1971 San Fernando EQ. \(^1\)

1. “Preventing the Nightmare” 2003- Report by ABAG
WHAT’S REALLY DEFICIENT?

- Cripple Walls Below First Floor
 - Sheathed one side
 - Stucco, horizontal sheathing

- Walls Above First Level
 - Covered both sides
 - Lathe & plaster, button board & plaster, gypsum board
T1-11 siding failure at edges

T1-11 & Channel Groove

Note:
Nailing of both panel edges along shiplap joint is recommended. The "double nailing" is required when wall segment must meet wall bracing or engineered shear wall requirements.
MUDSILL ATTACHMENTS

- Anchor Size & Spacing
- Use of Existing Anchors?
- Check for Sound Concrete

Movement prevented by bolts.

bolts with mudsill plates