

Wood Frame and Soft-Story Buildings CEA/FEMA Seismic Retrofit Standard ATC-110

Colin Blaney S.E.

OUTLINE

- > Overall Project Goal
- What is the Vision of CEA/FEMA
- Past Residential Damage
- > Typical Deficiencies
- Prescriptive vs. Engineered Approach
- What we have now ...Codes, Standards and Plan Sets
- Next Steps

OVER-ARCHING GOAL

National Pre-Standard and eventually Standard which will specifically address the seismic rehabilitation of one and two family residential dwellings (R3)

ATC -110 PROJECT TEAM

Project Technical Committee

Colin	Blaney	ZFA
John	Osteraas	Exponent
Kelly	Cobeen	WJE
Andre	Filiatrault	SUNY Buffalo
		Anderson Niswander
Tom	Anderson	Constr.
Frank	Rollo	Treadwell & Rollo
Ramin	Golesorkhi	Treadwell & Rollo

FA Structural Engineers

ATC-110 PROJECT TEAM

Project Steering Committee

David	Bonowitz	Consultant
Dan	Dolan	Washington State
David	Khorram	City of Long Beach
Vikki	Bourcier	Hobach-Lewin
Philip	Line	APA
Steve	Prvor	Simpson
Thor	Matteson	Consultant

FA Structural	Engineers
---------------	-----------

- National Standard to Address most Residential Construction
 - Cripple Wall Buildings
 - Slabs on Grade
 - Pole Type Foundations, Pier and Beam Systems
 - > Hillside Homes
 - House over Garages

Focus on Prescriptive Approaches

- > Embed the Engineering
- Make Implementation Simple & Effective

Streamline an Engineered Approach

Create Design Tools and Detail Libraries to assist Engineers.

- To Answer other important Questions
 - When does a certain vulnerability become an elevated concern?
 - When does the slope of a particular site warrant additional design or rehabilitation measures
 - Can the rehabilitation of Hillside Homes follow prescriptive Standards.
 - How do we address the variance of construction practices

- > To Address other important Goals
 - Can we develop a better idea of expected drift, the onset of damage and possible collapse for specific structures types and materials.
 - Cost to Benefit Indicators for Retrofits

PAST RESIDENTIAL DAMAGE

1983 Coalinga Earthquake- M 6.3¹

- > Almost destroyed 309 single-family homes
- Major damage 558 single-family homes
- Minor damage 811 single-family homes
- 1. A disaster assessment by the American Red Cross

PAST RESIDENTIAL DAMAGE

"Preventing the Nightmare" 2003- Report by ABAG

The October 17th 1989 Loma Prieta Earthquake. EQE Report October

1.

2.

1989.

1989 Loma Prieta Earthquake -M 6.9

- Older homes that were not bolted to their foundations or which lacked properly braced cripple walls accounted for over 2,800 of the 16,000 or 17.5% of <u>all</u> housing units made uninhabitable.¹
- In Watsonville 10-20% of all pre-1940 residences suffered cripple wall damage. Some blocks suffered nearly 100%²

WHAT'S DEFICIENT?

- The lack of continuous concrete or reinforced masonry footings at the perimeter,
- Cripple walls with inadequate bracing,
- Minimal or no attachment between the floor framing and the top of cripple wall or mudsill,
- The lack of appropriate anchorage between the mudsill and foundation system.

WHAT'S REALLY DEFICIENT?

Lack of redundancy below first floor

MUDSILL ATTACHMENTS

January 16-17, 2014 - University of California, Los Angeles

A Structural Engineers

MUDSILL ATTACHMENTS

January 16-17, 2014 - University of California, Los Angeles

FA Structural Engineers

CRIPPLE WALL FAILURES

INADEQUATELY SHEATHED CRIPPLE WALLS

WHAT DOESN'T WORK?

- Horizontal Wood Sheathing/Shingles
- Stucco/Plaster ?
- ≻T1-11 Siding ?

≻Let in Bracing

WHAT DOES WORK?

- Plywood
- OSB (oriented strand board)
- Diagonal Wood Sheathing

FLOOR TO CRIPPLE WALL ATTACHMENTS

January 16-17, 2014 - University of California, Los Angeles

FA Structural Engineers

FLOOR TO CRIPPLE WALL ATTACHMENTS

Photos Courtesy By Area Retrofit

January 16-17, 2014 - University of California, Los Angeles

FA Structural Engineers

FLOOR TO MUDSILL ATTACHMENTS

January 16-17, 2014 - University of California, Los Angeles

ZFA Structural Engineers

WHAT DOCUMENTS DO WE HAVE

- ➢ FEMA P-50, P50.1
- ➢ IEBC A3
- Plan Set A
- City of LA DBS Anchor Bolt Plan (2009)
- Simpson Strong-Tie
- Plan Set B ?? (Standard Plan B)

PRESCRIPTIVE STANDARDS

 Engineering Intent "Embedded"
Developed for Specific "Most Typical Conditions"

Use in Manner Consistent with Details

ENGINEERED SOLUTION

- Required when building falls outside of Scope (Example-A301.2)
- When the existing detailing falls outside of the "Most Typical Conditions"
- ➢ 75% of Code Design Forces

WHAT MAKES THESE DOCUMENTS DIFFERENT?

- Developed for Homeowners, Contractors, & Engineers
- Focus on "Critical Risk"
- Recipe of "Prescriptive Requirements & Details"

WHAT IS "CRITICAL RISK"

IEBC A3 & WHERE DOES IT APPLY?

- Residential Buildings of Light Frame Construction (R-3)
- > Not More than Four Dwelling Units
- 16 or fewer Primarily Permanent Occupants
- Cripple Walls Less Than 4' in Height

WHERE DOES IEBC A3 APPLY?

- Homes with post & pier and URM Foundation Systems
- Engineering Assessment or Prescriptive Foundations

Jim Russell

Anderson Niswander

WHERE DOESN'T A3 APPLY?

- Cripple walls over 4' in Height
- Homes with Pole Foundations
- Buildings Exceeding Three Stories in Height
- Buildings With Slabs on Grade

WHERE DOESN'T A3 APPLY?

4' Max Height

Wall Stud Movement

3rd Story 2nd Story 1st Story 14" Max.

Cut-Off Height January 16-17, 2014 - University of California, Los Angeles

WHERE SHOULD YOU APPLY IEBC A3 WITH CAUTION?

- Sloping Sites
- Long Rectangular Homes
- > High Seismicity (CS > .192g, SDS> 1.25)
- Split Levels
- Homes with Heavy Finishes
- Unusual Configurations & HOG

OTHER PRESCRIPTIVE METHODS

- Plan Set A (Standard Plan A 2008)
- City of LA DBS Anchor Bolt Plan (2009)
- Simpson Strong-Tie
- Plan Set B ?? (Standard Plan B)

PLAN SET A- PAGE 1

PLAN SET A- PAGE 2

PLAN SET B

January 16-17, 2014 - University of California, Los Angeles

FA Structural Engineers

PROS & CONS OF IEBC A3

- > Pro's
 - > Adopted into the Code/ National Presence
 - Regularly Updated
 - Coordinated with Other Codes
 - > Broad applicability with engineered design
 - Standardized and prescriptive details

PROS & CONS OF IEBC A3

Con's

- Does not easily Produce Plans and Details
- > Not easily available
- > Limited prescriptive details

PROS & CONS OF PLAN SETS

- > Pro's
 - > Developed for Home Owners and GC's
 - Consistent notes, detail, procedures
 - Formatted for Construction
 - Easy to Follow

PROS & CONS OF PLAN SETS

Con's

- No Official Update Process
- Limited Applicable Details/ Conditions
- More Limited Applicability
- > No Direct Engineered Approach

CONTRIBUTORS TO SUCCESS

Regulatory Agencies

- Embrace the Program
- Quality Control and Quality Assurance of Program

NEXT STEPS

- Review all Current Data
- Study & Define the Opportunities
- > Develop & Prioritize Realistic Goals
- Implement- Anticipated 5 year Program

Thank you

PAST RESIDENTIAL DAMAGE

1994 Northridge Earthquake- M 6.7

- > 48,000 residential units made uninhabitable.
- Only 439 of the 48,000 or slightly less than 1% had cripple wall failures. ¹
- Difference due to newer homes, slab on grade construction, or homes retrofitted after 1971 San Fernando EQ.¹

1. "Preventing the Nightmare" 2003- Report by ABAG

WHAT'S REALLY DEFICIENT?

- Cripple Walls Below First Floor
- Sheathed one side
- Stucco, horizontal sheathing
- ➤Walls Above First Level
- Covered both sides
- Lathe & plaster, button board & plaster, gypsum board

T1-11 siding failure at edges

MUDSILL ATTACHMENTS

Anchor Size & Spacing Use of Existing Anchors? Check for Sound Concrete

