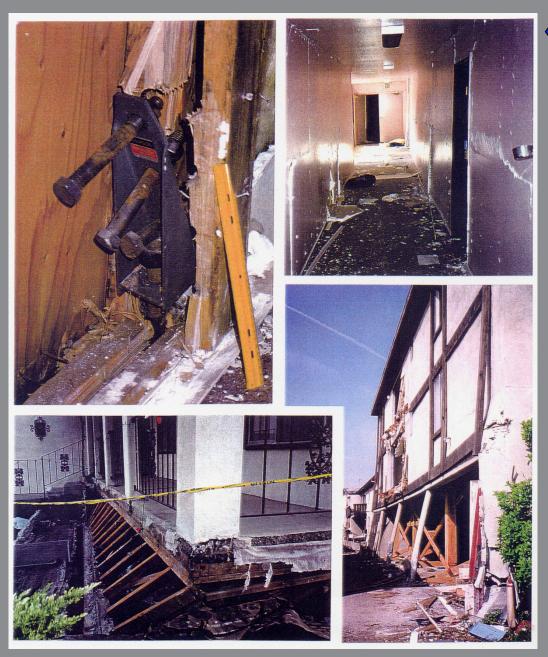
The Northridge Experience and

CUREE-Caltech Woodframe Project

Kelly Cobeen, Wiss Janney Elstner & Associates

Casualties: 24 of the 25 fatalities in the Northridge Earthquake that were caused by building damage occurred in woodframe buildings (1)



Property Loss: Half or more of the \$40 billion in property damage was due to damage to wood buildings; approximately. \$15 billion in insured loss (2)

Functionality: 48,000 housing units, almost all of them in woodframe buildings, were rendered uninhabitable by the earthquake (3)

- (1) EQE and Calif. OES, 1995
- (2) Charles Kircher et al., 1997, and Robert Reitherman, 1998
- (3) Jeanne B. Perkins, et al., 1998

Property and functional loss

Property and functional loss life safety

Northridge 20 Symposium - January 17, 2014

Woodframe Project Goal

 Advance the (seismic) engineering of woodframe buildings and improve the efficiency of their construction for targeted performance levels

Advisory Committee Frank Beall (UC FPL), Jay Crandell (NAHRB RC), Nic Delli Quadri (LA), Daniel Dolan, (VPI) Greg Foliente (CSIRO), Robert Hanson (FEMA), Eric Kough (Kaufman & Broad), Philip Line, (AFPA) Michael Mahoney (FEMA), Gary Mochizuki (SEAOC), Andy Petrow (OES), James Russell (IBHS), Daniel Shapiro (CSSC), Edward Takehashi (CCAIA)

Project Organization Chart

Iohn Hall Project Manager (Caltech)

Robert Reitherman **Project Director** (CUREE)

Gregg Brandow Senior Advisor & Representative (Brandow & Johnston)

1. Testing and **Analysis**

Prof. André **Filiatrault**

Prof. Frieder Seible **Prof. Chia-Ming Uang** Asst. Manager (UCSD) Asst. Manager (UCSD)

2. Field **Investigation**

Prof. G.G. Schierle Manager (USC)

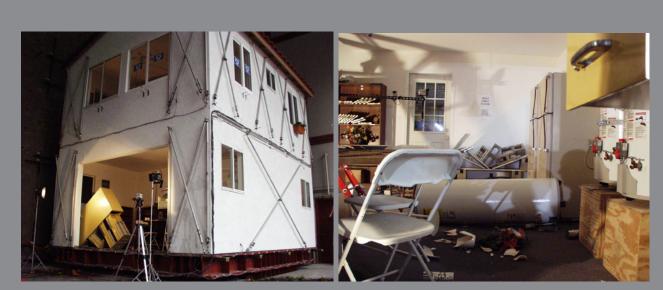
Kelly Cobeen, S.E. Manager (GFDS Engineers)

4. Economic

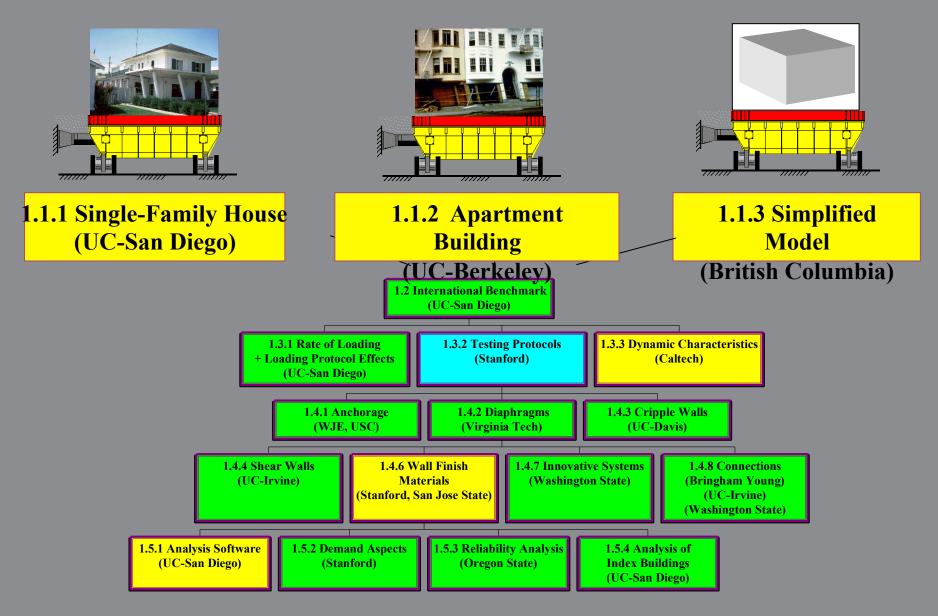
Thomas Tobin Manager (Tobin & Assoc.)

5. Education and Outreach

Iill Andrews Manager (SCEC)


John Coil, S.E. Asst. Manager (Coil & Welsh)

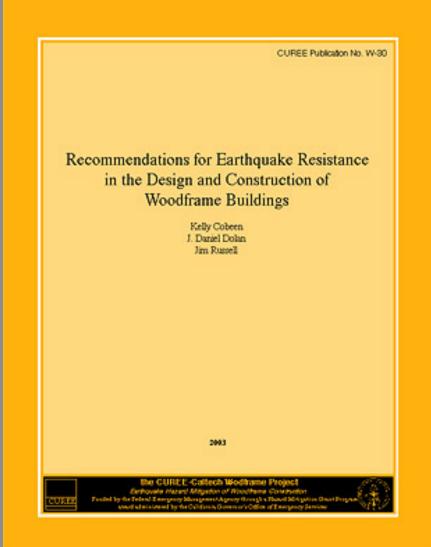
James Russell, P.E. Asst. Manager (Bldg. Codes Consultant)


Element 1: Testing and Analysis

 23 CUREE reports are available from 22 testing and analysis tasks

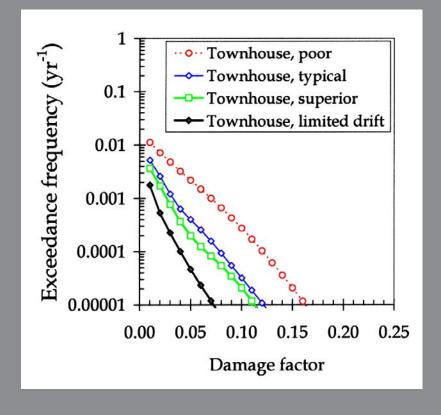
Analysis and Experimental Components

Element 2: Field Investigations


• CUREE Pub. W-04: Woodframe Project Case Studies, ed. by G.G. Schierle

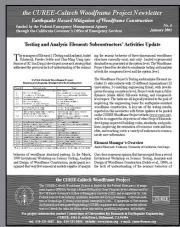
CUREE Pub. W-09:
 Northridge Earthquake
 Field Investigations:
 Statistical Analysis, G.G.
 Schierle

Element 3: Codes & Standards


 CUREE Publication W-30: Recommendations for Earthquake Resistance in the Design and Construction of Woodframe Buildings, Parts I and II

Element 4: Loss Estimation

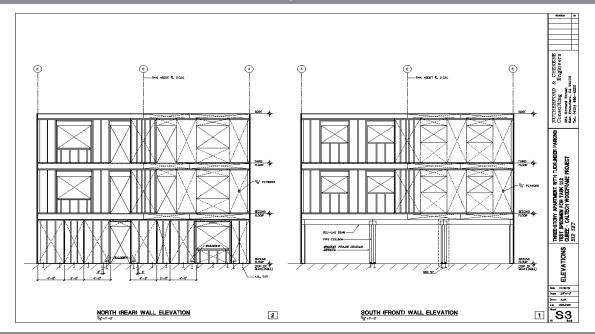
• CUREE Report W-18: Improving Loss Estimation for Woodframe Buildings, Porter


et. al.

Element 5: Education & Outreach

- Video Updates
- Newsletters
- Museum Displays
- Coordination of Media Information

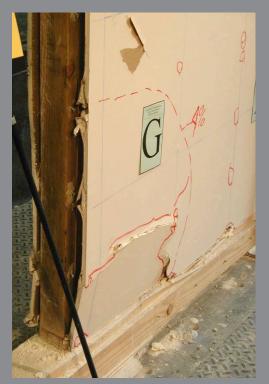
W-06: Shake Table Tests of a Two-Story Woodframe House



D. Fischer; A. Filiatrault; B. Folz; C.-M. Uang; and F. Seible, *UC San Diego Designer: K. Cobeen, S.E.*

W-19: Seismic Evaluation of an Asymmetric Three-Story Woodframe Building

K. M. Mosalam, C. Machado, K.-U. Gliniorz C. Naito, E. Kunkel, and S. Mahin, *UC Berkeley Designer: Bret Lizundia, S.E.*

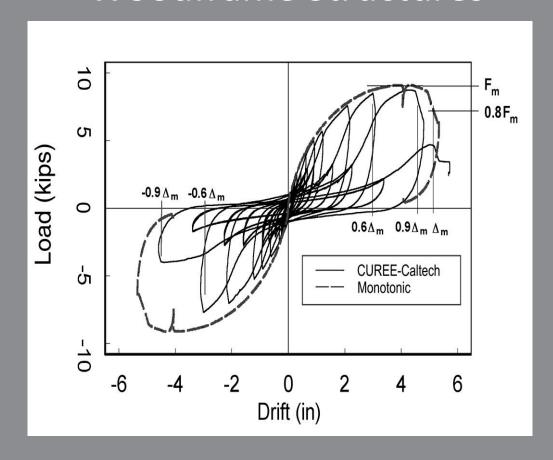

W-14: Anchorage of Woodframe Buildings: Laboratory Testing Report

J. Mahaney and B. Kehoe *Wiss, Janney, Elstner, and Assoc.*

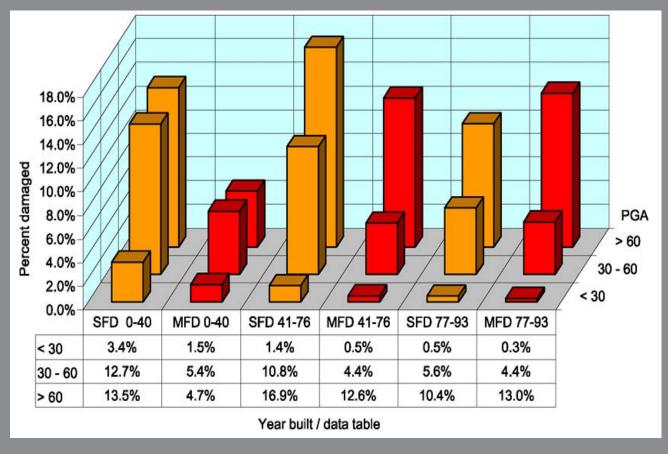
W-15: Seismic Performance of Gypsum Walls: Experimental Test Program

K. McMullin and D. Merrick San Jose State University

W-17: Seismic Behavior of Level and Stepped Cripple Walls



R. Chai, T. Hutchinson, and S. Vukazich *UC Davis*


W-02: Development of a Testing Protocol for Woodframe Structures

H. Krawinkler, F. Parisi, L. Ibara, A. Ayoub, and R. Medina *Stanford University*

W-09: Northridge Earthquake Field Investigations: Statistical Analysis of Woodframe Damage

G. G. Schierle *University of Southern California*

W-21: SAWS – Version 1.0 – A Computer Program for the Seismic Analysis of Woodframe Shearwalls

Rigid plane stress quadrilateral elements for roof diaphragm Frame elements representing quasi-static loading channel section Boundary frame elements at all edges of floor and Floor roof diaphragms opening Plane stress quadrilateral elements for floor diaphragm Typical zero-length nonlinear shear spring elements with Wavne Stewart Hysteresis for shearwall elements Direction of Shaking North

Task 1.1.1 - Phase 9 Test Structure

A Computer Program for
Sciencic Analysis of Woodfarms Structures
From the
International

3-D Model of Task 1.1.1 Test Structure

B. Folz and A. Filiatrault *UC San Diego*

W-04: Woodframe Project: Case Studies

Edited by G. G. Schierle *University of Southern California*

Future Needs

Goal: Advance the (seismic) engineering of woodframe buildings and improve the efficiency of their construction for targeted performance levels

Update: Ability to predict performance, move towards improved performance are key

Question: What happens if we do nothing:

- New buildings similar to recent
- Existing buildings
- Future mid-rise/ larger buildings

Future Needs

- Research
- Design
- Implementation
- Quality control
- Evaluation and retrofit of existing buildings
- Evaluation and repair of damaged buildings

Future Needs — Research

- Close gap between state of the art analysis tools and full building performance to provide reliable prediction of strength, deflection, and collapse
 - Large scale component testing with realistic boundary conditions, new and archaic material
 - Full building testing to collapse for analysis validation
 - Analytical studies of existing buildings with known earthquake performance
 - Analysis tool development and validation with all available information

Future Needs – Design

- Simplified design tools that capture actual building behavior and performance
 - For new buildings
 - For evaluation and retrofit of existing buildings
 - To understand performance
 - To aid in day-to-day design decisions
 - To inform trends in structural design
 - To inform development of proprietary components

Future Needs – Implementation

- Screening tools to quickly identify vulnerable building configurations that rise to the level of requiring detailed evaluation
- Broad estimates of performance and cost benefits of retrofit to encourage above-code construction
- Tools to communicate anticipated performance to nontechnical community in a responsible and realistic fashion

Future Needs – Quality Control

- Quality of construction and resulting performance issues remains significant concern in engineering community
 - Training of construction industry
 - Oversight

Future Needs – Evaluation and Retrofit of Existing Buildings

- Better understanding of when and why buildings become vulnerable
 - Realistic evaluation of performance
 - How weak is too weak
 - Construction quality influence
 - Deterioration influence?
- Efficient methods to improve performance

Future Needs – Evaluation and Repair of Damaged Buildings

- Better understanding of performance implications of damage
 - Technical understanding
 - Guidance for building evaluators
 - Guidance for repair design
- Efficient methods of repair

Acknowledgements

• CUREE-Caltech Woodframe Project Funding: Provided primarily by the Federal Emergency Management Agency (FEMA) under the Hazard Mitigation Program, Section 404 of the Robert T. Stafford Act (Public Law 93-288 as revised), through a California Governor's Office of Emergency Services (OES) Hazard Mitigation Grant award.

Questions, Comments?