Lessons from Northridge and SAC:

The Changes that Resulted in Research

Chia-Ming Uang, Professor
Department of Structural Engineering
University of California, San Diego
Changes in Codes

• **Materials Codes**
 - AISC 341
 - AISC 358
 - AWS D1.8
 - ASCE 41

• **Loadings Codes**
 - ASCE 7
 - IBC
Change 1: Set A Model

SAC Joint Venture

• A Problem-Focused, Nationwide Team Effort
• Interdisciplinary
• Practicing engineers and researchers work together
Change 2: Mentality

Responsibility of Weld Fracture:

<table>
<thead>
<tr>
<th>before Northridge</th>
<th>after Northridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welder</td>
<td>Researcher</td>
</tr>
<tr>
<td></td>
<td>Designer</td>
</tr>
<tr>
<td></td>
<td>Inspector</td>
</tr>
<tr>
<td></td>
<td>Electrode Manufacturer</td>
</tr>
<tr>
<td></td>
<td>Welder</td>
</tr>
</tbody>
</table>
Issues and Changes in Seismic Moment Connection Research and Design
Expected Seismic Demand

• Force
• Deformation
Seismic Force Demand

Steel Materials

• For seismic capacity design, stronger steel hurts!
• Capacity steel design provisions first appeared in 1988 UBC.
• Before Northridge, we naively thought A36 W-shapes still existed.
Change 3: Steel Materials

- A992 Steel Introduced
- Explicitly Considered in Design:
 - Material overstrength (R_y)
 - Cyclic strain hardening (C_{pr})
Seismic Deformation Demand

• Before Northridge EQ.
 \[0.005K \times \left(\frac{3}{K}\right) = 1.5\% \text{ story drift}\]

 or

 \[\frac{0.04}{R_{\downarrow w}} \times \left(\frac{3R_{\downarrow w}}{8}\right) = 1.5\% \text{ story drift}\]

• After Northridge EQ.
 4\% \text{ story drift}
Test Loading Protocol Issue

- Δy based
- Used 1 SAC Phase 1 testing
Change 4: Loading Protocol Standardization

- After Northridge EQ.
 - SAC or AISC Loading Protocol
 - Story drift based
 - Acceptance criteria established
Change 5: Specimen Scale Issue

• Before Northridge EQ.
 ♦ Small-scale models were tested
 ♦ SAC study showed size effect and welding/heat effect
• After Northridge EQ.
 ♦ Full-scale testing
 ♦ AISC 358 member size limits based on available full-scale testing
Change 6: Specimen Construction

• Before Northridge EQ.
 Little attention paid to who welded and how the welding (welding electrode, welding procedure) was done.

• After Northridge EQ.
 Always simulate field welding and document the process.
Change 7: Proprietary Connections and Alternate Systems

• Before Northridge EQ.
 No proprietary moment connections

• After Northridge EQ.
 ♦ Proprietary connections
 ♦ BRBF, SPSW, SCBF
Change 8: Steel Researchers

• Before Northridge EQ.
 Steel/concrete researcher ratio was low.

• After Northridge EQ.
 ♦ Ratio is improved, although is still low
 ♦ SAC era produced some talented younger students/researchers
 ♦ AISC follows up with Fellowship program