Concrete Building Inventories: Implications for Retrofit Policies for Nonductile Concrete Buildings

Mary C Comerio and Thalia Anagnos

Reaching a Broader Audience

Concrete Coalition advocates

- the identification of older concrete buildings
- the development of sensible solutions
- Inventory 23 highest seismicity counties
- Engage engineers, cities, agencies, policy makers

Counting older concrete buildings

What

- Pre-1976 UBC \approx 1980 construction
- How
 - Volunteers for ~ 40 cities
 - Walk the city
 - Talk to building officials
 - Assessor data
 - Zoning maps
 - Sanborn maps
 - Drawing files
 - Google Earth
 - Sanity checks
 - Regression analyses

Collecting Inventory

California inventory estimate

- City of Los Angeles 1500 buildings
- San Francisco 3200 buildings
- For 22 CA counties 22,000 buildings

Older Concrete Building Damage Rating

NSF NEES Grand Challenge Project

- Understand the scale of the problem
- Increase awareness
- Improve modeling and simulation
 components
 - soil-foundation-structural systems
- Facilitate identification of critical deficiencies
- Demonstrate cost-effective retrofit
- Identify mitigation policy alternatives

LA Inventory: Implications for Policy

- 470 sq. miles
- 1500 Buildings
- 88 mil. sq ft older concrete
- Geocoded database Public Sources

Inventory Characteristics

Commercial

Residential

School

Critical Deficiencies

ATC/CUREE Joint Venture 7-year project

8 recommended guidelines for assessment, modeling, mitigation

NIST GCR 10-917-7

Program Plan for the Development of Collapse Assessment and Mitigation Strategies for Existing Reinforced Concrete Buildings

NEIBRP Consultants Ioint Venture A partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering

1	Deficiency A. Shear critical columns	Deficiency E: Overall weak frames		
-	Shear and axial failure of columns in a moment frame or gravity frame system.	Overall deficient system strength and stiffness, leading to inadequacy of an otherwise reasonbably configured building.		
	Deficiency B: Unconfined beam-column Joints	Deficiency G: Overturning mechanisms		
	Shear and axial failure of unconfined beam-column joints, particularly corner joints.	Columns prone to crushing from overturning of discontinuous concrete or masonry infill wall.		
	Deficiency C: Slab-column connections	Deficiency H: Severe plan irregularity		
	Punching of slab-column connections under imposed lateral drifts.	Conditions (including some corner buildings) leading to large torsional- induced demands.		
	Deficiency D: Splice and connectivity weakness	Deficiency I: Severe vertical irregularity		
	Inadequate splices in plastic hinge regions and weak connectivity between members.	Setbacks causing concentration of damage and collapse where stiffness and strength changes. Can also be caused by change in material or seismic-force- resisting-system.		
	Deficiency E: Weak-story mechanism	Deficiency J: Pounding		
	Weak-column, strong-beam moment frame or similar system prone to story collapse from failure of weak columns subjected to large lateral deformation demands.	Collapse caused by pounding of adjacent buildings with different story heights and non-coincident floors.		

Deficiencies in Inventory Groups For Loss Estimation and Simulation

- 1: Short, pre-1929, various occupancies.
- 2: 4+ story, pre-1929 warehouses.
- 3: 4+ story, pre-1959 apartments.
- 4: 8+ story, apartments.
- 5: 8+ story, hotels.

- 6: 4+ story, 1960-79 commercial/office.
- 7: 8+ story, pre 1929 commercial/office.
- 8: 8+ story, 1960-79 modern office.
- 9: 1-3 story, 1960-79 non-office commercial.
- 10: 4-7 story, pre-1929 non-office commercial.
- Parking structures.
 - Education structures.

Two Scenarios for Loss Models

PEAK GROUND ACCELERATIONS M 7.15 Puente Hills M 7.8 S. San Andreas

Estimates of Losses

	Baseline		Retrofitted	
	Losses w/ closure & business Interruption	Deaths	Losses w/ closure & business Interruption	Deaths
San Andreas	\$1.9 Billion	0-25	\$350 million	<10
Puente Hills	\$19.6 Billion	300-2000	\$5.8 Billion	5-50

Policy Example

Hypothetically retrofit only high rise

- 15% of buildings
- 38% of value

	Reduction in Losses	Reduction in Deaths
San Andreas	83% (high rise)	Close to 100% (high rise)
	54% (overall)	48% or more (overall)
Puente Hills	64% (high rise)	90 to 95% (overall)
	26% (overall)	17 to 34% (overall)

Mitigation & Policy Implications

An inventory guides policy approaches

- Targeted retrofits of categories with high loss estimates is cost effective and influence how cities plan for mitigation
- Voluntary and mandatory programs can be quite effective in mitigating risk
- NSF NEES Grand Challenge research is available on on the NEEShub
 - https://nees.org/data/download/NEES-2008-0637/Documentation/ Older_Concrete_Building_Modeling_Inventory.pdf
- Researchers working with City and sharing data with the City of Los Angeles

How Cities Develop Inventories 1

- 1. A city holds a hearing to establish criteria for inclusion of collapse-risk buildings in an the inventory.
- 2. City prepares a draft inventory.
- 3. City notifies owners that their building is a candidate to be placed on the yet-to-be published draft inventory and provide them ample time and opportunity to produce evidence that would demonstrate that their building does not meet criteria.
- 4. City receives owner comments and take actions to revise the draft inventory based on input from owners.

How Cities Develop Inventories 2

- 5. City publishes the draft inventory and allow time and opportunity for the general public to comment on the draft.
- 6. City receives public comments and take actions to revise the draft inventory based on input from the public.
- 7. City holds a public hearing to discuss the draft inventory.
- 8. City takes an action to publish a final inventory, and allows the building department to periodically make further changes to the inventory as additional information becomes available.

The San Francisco Experience

- The Community Action Plan for Seismic Safety (CAPSS) Program begun in 1998 and the study completed 2010
- SPUR Disaster Planning 2001-present
- The Earthquake Safety Implementation Program (ESIP) began in early 2012 as a 30 year program.
- April, 2013, Mayor Ed Lee signed into law the Mandatory Soft Story Retrofit Ordinance.

Incremental Policy Approach

- Learn from experience with retroactive ordinances for masonry and soft-story buildings
- Engage civic groups, owners and tenants in discussion of policy options, retrofit finance and time-lines
- Build coalitions of support for community seismic safety
- Creative incentives are essential
- Expect long planning and implementation timelines