FEMA P-807 Guidelines for Seismic Retrofit of Weak-Story Wood-Frame Buildings

Post-Northridge Developments

Large Scale Response History Analysis FEMA P-695 : Incremental Dynamic Analysis Testing of Archaic Materials Design of Perforated Walls

FEMA P-807 Innovations

Relative Strength Method Surrogate Structure Matching Weak Story Tool

4,400 Dangerous Multi-unit Buildings: 8% of population

Create Seismic Retrofit Program for Weak-Story Wood-framed Apartment Buildings in Western US

The Problem

1989 Loma Prieta earthquake Image by Raymond B. Seed National Information Service for Earthquake Engineering University of California, Berkeley. Inexpensive to Construct (Work Only In Ground Story)

Inexpensive to Design (Unsophisticated Engineers)

> Performs Well (Shelter-In-Place)

Typically: Non-Engineered No Plans Archaic Materials Archaic Construction Practices

-

JUIL

AUT

Design for a Population of Buildings, not an Individual Building

Pattern Recognition

Pattern Recognition

Limited Damage to Upper Structure

Damage Concentrated in Lower Structure

RELATIVE

STRENGTH

METHOD

The Relative Strength Method

SURROGATE

STRUCTURE

MATCHING

Can a Building's Capacity be Determined from a Few Parameters?

Local Seismicity

Translational Weakness

Torsional Weakness

GROUND FLOOR

Low Displacement Capacity

Drift Ratio, %

Hysteresis of low displacement capacity material FEMA P-807 : Guidelines for Cost-Effective Seismic Retrofit of Weak-Story Wood-Frame Buildings

High Displacement Capacity

Hysteresis of high-displacement capacity material FEMA P-807 : Guidelines for Cost-Effective Seismic Retrofit of Weak-Story Wood-Frame Buildings

Create a Controlled Experiment Determine the Influence of Each Characteristic

Analytical Engine: Surrogate Structure Concept

Simplified Building Model

Analytical Engine: Surrogate-Structure Concept

612 surrogate structures x 44 EQs x 35 intensities

1 million nonlinear response-history analyses

Analysis Results

Analysis Results

Total Ground Floor Strength/Upper Floor Strength

Analytical Methodology – Accounting for Torsion

Spectral Capacity, Sc

$$S_{c1,x} = 0.66 (0.525 + 2.24A_{W,x}) (1 - 0.5C_T) Q_s A_{U,x}^{0.48} \qquad C_D = 1.0$$

$$S_{c0,x} = 0.60(0.122 + 1.59A_{W,x})(1 - 0.5C_T)Q_s A_{U,x}^{0.60} \quad C_D = 0.0$$

Modifier for POE = 0.2
Mean spectral capacity, S_m

$$S_{c,x} = C_D^3 S_{c1,x} + (1 - C_D^3) S_{c0,x}$$

for intermediate values

 $S_{c,x} \ge S_{MS}$ if true – no retrofit required

Onset of Strength Loss drift criteria, OSL 20% Probability of Exceedance, POE

Characteristic Structural Coefficients

Ground-story Strength
$$C_{s,x} = \frac{V_{1,x}}{\sum_{j=1}^{N_s} W_j}$$

Upper-story Strength $C_{U,x} = \min\left(\frac{V_{i,x}}{\sum_{j=i}^{N_s} W_j}\right)_{i=2 \rightarrow N_s}$

Upper to Ground Strength Ratio
$$C_{W,x} = \frac{C_{s,x}}{C_{U,x}}$$

Toughness
$$C_{D,x} = \frac{F_{1,x}(\delta = 3\%)}{V_{1,x}}$$

Torsional Imbalance
$$C_T = \frac{\tau}{T}$$

Structural Use of Non-conforming Materials

Pushover Curve to Find Peak Strength

Weak-Story Wood-Frame Buildings

GROUND FLOOR

Torsion Backbone Curve

 $T = \max \left[t(\theta_i) \right]$

weak-story tool

1

Evaluation and Retrofit Guidelines for Weak-Story Wood Buildings

Probabilistic Understanding of Retrofit Benefit

Needs

More Testing of Archaic Materials Pre – Engineered Moment Frames Comprehensive Design & Detailing Examples