Foundation Rocking as a Bridge Design Strategy

Marios Panagiotou Assistant Professor

University of California, Berkeley

Past Research on Rocking Foundations

Numerical studies of single piers (Muto, Chopra and Yim), rigid blocks (Housner, Zhang and Makris) and bridge systems (Mergos and Kawashima)

Experimental studies include Caltrans-funded studies :

Shake table tests of bridge piers on rocking shallow foundations *Espinoza and Mahin (2008)*

Centrifuge tests of Systems Deng, Kunnath and Kutter

Question

Can we design economical bridges at near-fault sites using rocking foundations to minimize earthquake induced damage and ensure post-earthquake functionality ?

PART I

Seismic Design and Analysis of Bridges with Rocking Foundations at a Near-fault Site

> Grigorios Antonellis Graduate Student Researcher

> > Marios Panagiotou Assistant Professor

University of California (UC) Berkeley

Design concepts studied

5

Geometry of bridges

(b) found.-column-deck elevation

Description of site and ground motions

- Site: Oakland, California, 3 km from Hayward fault, V_{s,30} = 400 m / s (Soil type C)
- Bi-axial horizontal excitation
- 14 ground motions linearly scaled

Design of bridges

Rocking foundation bridges

Fixed-base bridges

- $D_c = 1.8 m, \rho_l = 2\%$
- Rubber bearings $D_b = 0.6 m^2$

Design Objectives at MCE

• Nominally elastic response of

columns, deck and piles

- Less than 0.03B soil settlement
- $Dc = 2.5 m, \rho_1 = 3\%$
- Lead rubber bearings $D_b = 1.3 m$, $D_{lead} = 0.34 m$
- Square B=8 m shallow footings
- 25 m long piles -1.5 m diameter

3D Numerical Modeling (OpenSees)

Analyses results

Lateral displacement and force profiles at 4% column drift ratio

Analyses results (mean values)

	FB17	RPF17	RSF17	FB8	RPF8	RSF8
Column drift ratio, (%)	4.9	4.1	4.0	3.6	4.6	5.0
Residual drift ratio, (%)	0.15	0.01	0.17	0.07	0.07	0.16
Tensile strain at column base (%)	5.3	0.2	0.1	5.6	0.3	0.1
Column axial compression force increase	0.2	0.7	0.4	0.5	1.3	1.0

Less than 0.8% total tension strain in post-tensioning strands of the deck

Analyses results (for individual motion)

Shallow foundation moment-rotation response

Analyses results (for individual motion)

System lateral resisted force versus lateral drift

PART II

Large-scale shake table test of columns supported on rocking shallow foundations

Ongoing research project funded by California Department of Transportation (Caltrans)

Principal Investigators Marios Panagiotou, UC Berkeley Bruce Kutter, UC Davis Jose Restrepo, UC San Diego Patrick Fox, UC San Diego Stephen Mahin, UC Berkeley

Graduate Student Researchers Grigorios Antonellis, UC Berkeley Andreas Gavras, UC Davis Gabriele Guerrini, UC San Diego Andrew Sander, UC San Diego

NEES@UCSD large confinement soil box

Geometry of the specimens and test setup

Clean sand ~ 80% relative density

Geometry of specimens and test setup

Geometry of the specimens and test setup

Test protocol and linear spectra (1% damping)

	Motion	Scale factor	
1	Gilroy Array 1	1.0	
2	Corralitos	0.8	
3	El Centro Array 6	1.1	
4	Pacoima Dam	0.8	
5	Takatori	0.5	
6	Takatori	1.0	
7*	Parachute Site	1.0	
8*	Parachute Site	-1.0	
9*	Parachute Site	1.1	

*Only for test day 3

For all motions the time was compressed by 1.73

Test results – 0° specimen

Peak (and residual) responses

	Roof	drift ratio,	Θ _t (%)	Edge settlement (mm)		
	Test day 1	Test day 2	Test day 3	Test day 1	Test day 2	Test day 3
Pacoima Dam 80%	3.6 (0.2)	3.7 (0.2)	3.2 (0.0)	15 (7)	18 (7)	12 (6)
Takatori 50%	6.8 (0.4)	6.7 (0.7)	5.7 (0.2)	26 (11)	26 (12)	22 (12)
Takatori 100%	12.0 (2.7)	14.2 (7.3)	10.3 (1.1)	48 (30)	54 (44)	46 (27)

Main results – 0° specimen Drift ratio, Θ_t , response histories

Test day 3 – detailing around the footings

Concrete, f_c'≈ 3.5 MPa (cast one day before the test)

Test day 3 results – 0° specimen

Drift ratio, Θ_t , time history

Test results – 0° specimen

Foundation moment versus foundation rotation (Takatori 50%)

Foundation moment, (kN-m)

25

Test results – 0° specimen

Foundation moment versus foundation rotation (test day 3)

Test day 3 results

Foundation rotation versus vertical displacement (test day 3)

Thank you

Detailing of rocking pile cap

3D Numerical Modeling (OpenSees)

Instrumentation

- 76 Accelerometers
- 33 String potentiometers
- 20 Linear potentiometers
- 8 Pore pressure transducers
- 21 Cameras

