Foundation *Rocking* as a Bridge

Design Strategy

Marios Panagiotou
Assistant Professor

University of California, Berkeley
Past Research on Rocking Foundations

Numerical studies of single piers (Muto, Chopra and Yim), rigid blocks (Housner, Zhang and Makris) and bridge systems (Mergos and Kawashima).

Experimental studies include **Caltrans-funded** studies:

- Shake table tests of bridge piers on rocking shallow foundations
 Espinoza and Mahin (2008)

- **Centrifuge tests of Systems**
 Deng, Kunnath and Kutter
Can we design economical bridges at near-fault sites using rocking foundations to minimize earthquake induced damage and ensure post-earthquake functionality?
PART I

Seismic Design and Analysis of Bridges with Rocking Foundations at a Near-fault Site

Grigorios Antonellis
Graduate Student Researcher

Marios Panagiotou
Assistant Professor

University of California (UC) Berkeley
Design concepts studied

Conventional fixed-base

Rocking pile foundation

Rocking shallow foundation

FB RPF RSF
Geometry of bridges

(a) Side view

Two column heights

\[H_c = 15.2 \text{ m} \]

\[H_c = 6.7 \text{ m} \]

(b) found.-column-deck elevation

(c) abutment-bearings section view
Description of site and ground motions

- Site: Oakland, California, 3 km from Hayward fault, $V_{s,30} = 400$ m/s (Soil type C)
- Bi-axial horizontal excitation
- 14 ground motions linearly scaled

Maximum Considered Earthquake (MCE): 2% probability of exceedance in 50 years
Fixed-base bridges

- $D_c = 1.8 \text{ m, } \rho_l = 2\%$
- Rubber bearings $D_b = 0.6 \text{ m}$

Rocking foundation bridges

Design Objectives at MCE

- Nominally elastic response of columns, deck and piles
- Less than 0.03B soil settlement

- $D_c = 2.5 \text{ m, } \rho_l = 3\%$
- **Lead rubber bearings**
 - $D_b = 1.3 \text{ m, } D_{lead} = 0.34 \text{ m}$
- Square $B=8 \text{ m shallow footings}$
- 25 m long piles -1.5 m diameter
3D Numerical Modeling (OpenSees)

(a) Abutment model

Force, (MN)

Displacement, (m)

Passive
Friction

(b) Shear key model

(c) Pile - vertical spring model

(d) Rocking pile foundation model
Analyses results

Lateral displacement and force profiles at 4% column drift ratio

(a) 17 m tall bridges - Displacement

(b) 8 m tall bridges - Displacement

(c) 17 m tall bridges - Force

(d) 8 m tall bridges - Force
Analyses results (mean values)

<table>
<thead>
<tr>
<th></th>
<th>FB17</th>
<th>RPF17</th>
<th>RSF17</th>
<th>FB8</th>
<th>RPF8</th>
<th>RSF8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column drift ratio, (%)</td>
<td>4.9</td>
<td>4.1</td>
<td>4.0</td>
<td>3.6</td>
<td>4.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Residual drift ratio, (%)</td>
<td>0.15</td>
<td>0.01</td>
<td>0.17</td>
<td>0.07</td>
<td>0.07</td>
<td>0.16</td>
</tr>
<tr>
<td>Tensile strain at column base (%)</td>
<td>5.3</td>
<td>0.2</td>
<td>0.1</td>
<td>5.6</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Column axial compression force increase</td>
<td>0.2</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Less than 0.8% total tension strain in post-tensioning strands of the deck
Analyses results (for individual motion)

Shallow foundation moment-rotation response

(a) RSF17

(b) RSF8
Analyses results (for individual motion)

System lateral resisted force versus lateral drift

(a) FB17

(b) RPF17
PART II

Large-scale shake table test of columns supported on *rocking shallow foundations*
Ongoing research project funded by California Department of Transportation (Caltrans)

Principal Investigators
- Marios Panagiotou, UC Berkeley
- Bruce Kutter, UC Davis
- Jose Restrepo, UC San Diego
- Patrick Fox, UC San Diego
- Stephen Mahin, UC Berkeley

Graduate Student Researchers
- Grigorios Antonellis, UC Berkeley
- Andreas Gavras, UC Davis
- Gabriele Guerrini, UC San Diego
- Andrew Sander, UC San Diego
NEES@UCSD large confinement soil box

9.1 m

7.6 m

4.6 m
Geometry of the specimens and test setup

- **Clean sand ~ 80% relative density**
- $FS_v \approx 11$
- $C_r \approx 0.26$
- $W_t/A_gf'_c = 5\%$

Soil surface

Cast concrete (test day 3 only)

Water level

Test Day 3

Test Day 2

Test Day 1
Geometry of specimens and test setup

Wood stoppers
Geometry of the specimens and test setup

Plan view

- Mass blocks
- Footing
- Soil box

0° specimen

skew (30°) specimen

Excitation
Test protocol and linear spectra (1% damping)

Table:

<table>
<thead>
<tr>
<th>Motion</th>
<th>Scale factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gilroy Array 1</td>
<td>1.0</td>
</tr>
<tr>
<td>2 Corralitos</td>
<td>0.8</td>
</tr>
<tr>
<td>3 El Centro Array 6</td>
<td>1.1</td>
</tr>
<tr>
<td>4 Pacoima Dam</td>
<td>0.8</td>
</tr>
<tr>
<td>5 Takatori</td>
<td>0.5</td>
</tr>
<tr>
<td>6 Takatori</td>
<td>1.0</td>
</tr>
<tr>
<td>7* Parachute Site</td>
<td>1.0</td>
</tr>
<tr>
<td>8* Parachute Site</td>
<td>-1.0</td>
</tr>
<tr>
<td>9* Parachute Site</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Only for test day 3

Graph:

- **Sa (g):**
 - El Centro #6: 110%
 - Pacoima Dam: 80%
 - Takatori: 50%
 - Takatori: 100%
 - Parachute: 100%

- **Sd (m):**
 - For all motions, the time was compressed by 1.73
Test results – 0° specimen

Peak (and residual) responses

<table>
<thead>
<tr>
<th></th>
<th>Roof drift ratio, Θ_t (%)</th>
<th>Edge settlement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test day 1</td>
<td>Test day 2</td>
</tr>
<tr>
<td>Pacoima Dam 80%</td>
<td>3.6 (0.2)</td>
<td>3.7 (0.2)</td>
</tr>
<tr>
<td>Takatori 50%</td>
<td>6.8 (0.4)</td>
<td>6.7 (0.7)</td>
</tr>
<tr>
<td>Takatori 100%</td>
<td>12.0 (2.7)</td>
<td>14.2 (7.3)</td>
</tr>
</tbody>
</table>
Main results – 0° specimen

Drift ratio, Θ_t, response histories

- **Test day 1**
 - El Centro #6 110%
 - Pacoima Dam 80%
 - Takatori 50%
 - Takatori 100%
 - Residual 2.7%

- **Test day 2**
 - Residual 7.3%

- **Test day 3**
 - Residual 1.1%
Test day 3 – detailing around the footings

Plastic sheet

0.3 m

Concrete, $f'_c \approx 3.5$ MPa
(cast one day before the test)
Test day 3 results – 0° specimen

Drift ratio, Θ_t, time history

- El Centro #6 110%
- Takatori 50%
- Pacoima Dam 80%
- Takatori 100%
- Parachute 100%
- Parachute -100%
- Parachute 110%

Θ_t (%) vs. time (s)
Test results – 0° specimen

Foundation moment versus foundation rotation (Takatori 50%)
Test results – 0° specimen

Foundation moment versus foundation rotation (test day 3)

Pacoima Dam 80%

Takatori 50%

Takatori 100%

Parachute Site 100%
Test day 3 results

Foundation rotation versus vertical displacement (test day 3)

Pacoima Dam 80%

Takatori 50%

Takatori 100%

Parachute Site 100%
Thank you
Detailing of rocking pile cap
3D Numerical Modeling (OpenSees)
Instrumentation

- 76 Accelerometers
- 33 String potentiometers
- 20 Linear potentiometers
- 8 Pore pressure transducers
- 21 Cameras

[Image of construction site with labeled instruments]