

Ground Motion Prediction Equations: Developments and Advancements since 1994

Yousef Bozorgnia, PEER Executive Director, UC Berkeley

January 16-17, 2014 - University of California, Los Angeles

Ground motion prediction equations

- GMPEs
- "Ground motion models"
- Used to be named "Attenuation" relations
- Scaling models of ground motions with respect to magnitude, distance, site conditions, ...
- For active tectonic regions, the models are mainly based on "observations", i.e., recorded ground motions

Some key milestones in development of GMPEs

1964 Luis Esteva & Emilio Rosenblueth

 $a=c\exp(\alpha M)R^{-\beta}$

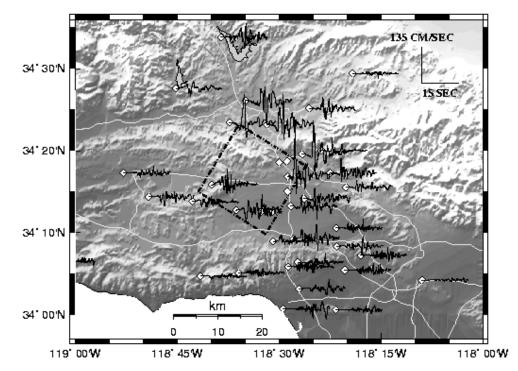
• 1970 Esteva $a = c_1 e^{c_2 M} (R + c_3)^{-c_4}$

1978 Sadigh, et al.

 $\ln y = \ln A + BM_{\rm s} + E\ln[R + d\exp(fM_{\rm s})]$

1981 Campbell

 $PGA = a \exp(bM) [R + c_1 \exp(c_2 M)]^{-d}$


1981 Joyner and Boore

$$\log y = lpha + eta \mathbf{M} - \log r + br$$

where $r = (d^2 + h^2)^{1/2}$

1994 Northridge earthquake

- Provided a wellrecorded set of ground motions
- Still one of the important Reverse faulting EQs that provided a contrast between hanging wall and footwall ground motions

Source: http://pasadena.wr.usgs.gov/office/wald/CUREe.html

What we knew in 1994

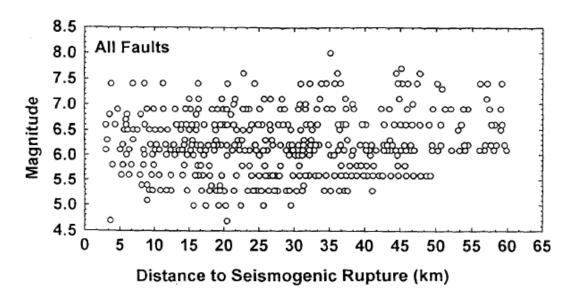
- Distance measure: Distance to the fault (Joyner & Boore distance, seismogenic distance)
- Soil condition was considered important
 - It was mainly classified as "hard rock", "stiff soil", "rock", "soil"
 - Boore et al. just started using scaling with V_{S30}
- Style of faulting was recognized as important

SYMPOSIUM

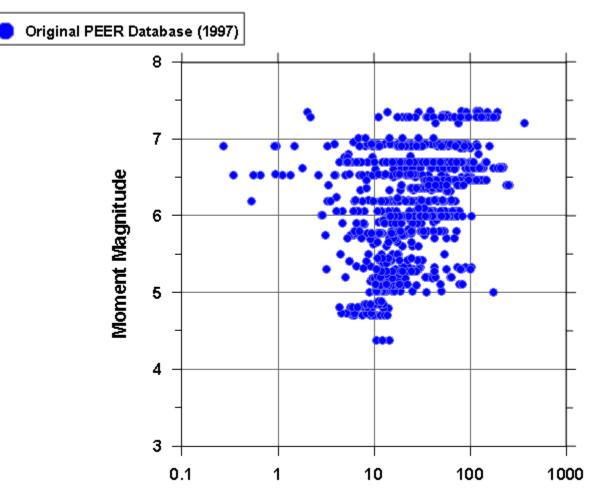
 Concept of "magnitude saturation" was acceptable by some researchers

Following the Northridge EQ

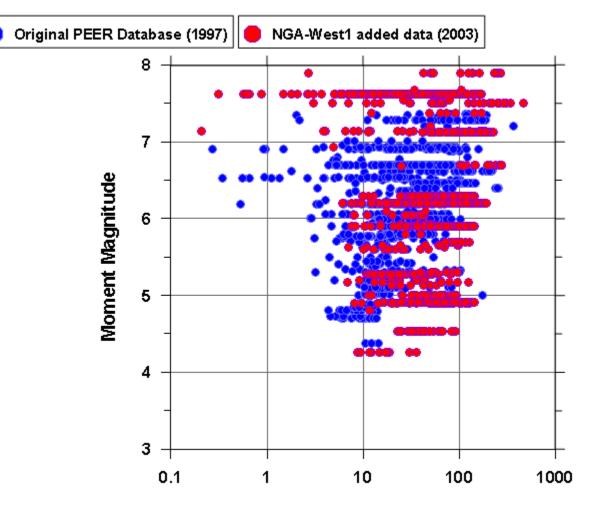
- Major advances in the development of GMPEs have been through the NGA project(s)
- NGA = Next Generation Attenuation relations
- PEER compiled a very comprehensive database of ground motions recorded in shallow crustal earthquakes in active tectonic regions

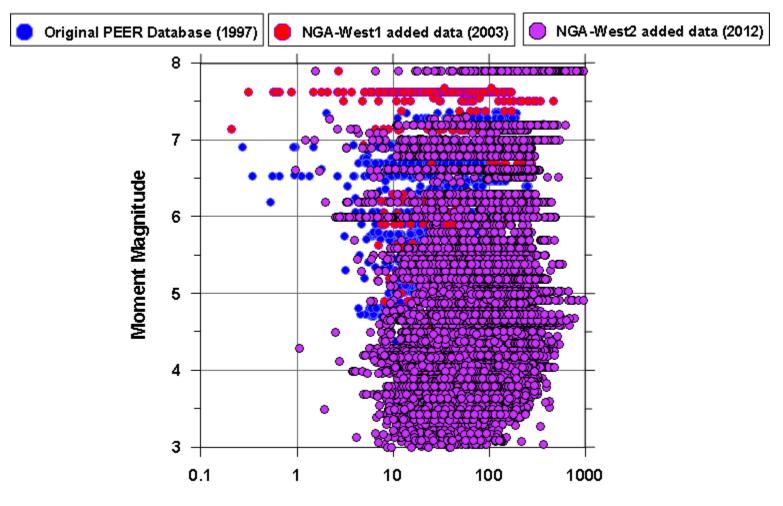

NGA-West1 & NGA-West2

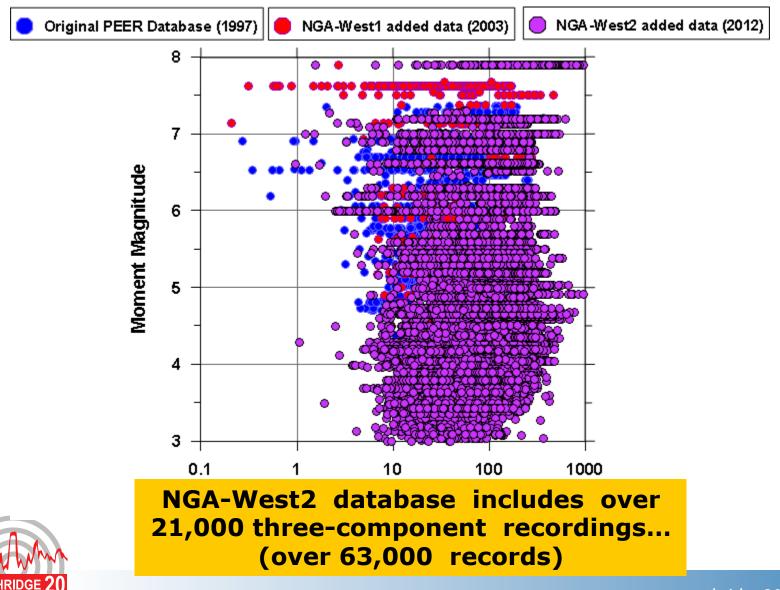
- NGA-West1 Initiated October 2003
- In 2008, NGA-West1 GMPEs were finalized
- In 2008 USGS adopted the NGA-West1 GMPEs for the US National Seismic Hazard Maps
- NGA-West2 is a follow-up of NGA-West1


In 1994, a typical database was

- Horizontal components: 645 recordings in 47 EQs
- Vertical components: 225 recordings in 26 EQs


Reference: Campbell and Bozorgnia, 1994


Closest Distance to Rupture (km)


Closest Distance to Rupture (km)

Closest Distance to Rupture (km)

SYMPOSIUM

Database evolution: As an example

- Campbell and Bozorgnia selected databases:
 - 1994 database: 645 recordings (from 47 EQs)
 - 2014 database: 15,521 recordings (from 322 EQs)
 - Database size increased by a factor of 24

Availability of databases in 1994 vs 2014

- In 1994: Most of the ground motion databases were not public
 - Individual teams had their own databases
- In 2014: NGA databases are shared among the GMPE developers and also available to the public
 - Full transparency
 - Much higher quality
 - Avoiding duplication
 - Making it available for other applications

2014 NGA-West2 database "flatfiles"

	Α	В	С	D	E	F	G	Н	I	J	K	L	М
	Record Sequence							Station Sequence		Earthquake		Magnitude Uncertainty:	Magnitude Uncertainty:
1	Number	EQID	Earthquake Name	YEAR	MODY 1031	HRMN 1838	Station Name Carroll College	Number	Station ID No.	Magnitude	Magnitude Type	Kagan Model	Statistical
2	1 2	0001	Helena, Montana-01 Helena, Montana-02	-	1031	1030	Helena Fed Bidg	197	2022	6.00		0.3000	-999
3	2	0002	,		_	-	Ferndale City Hall	198	2229	6.00		0.3000	-999
4 5		0003	Humbolt Bay		0207	0442		133	1023			0.3000	-999
5 6	4	0004	Imperial Valley-01		0606	0242	El Centro Array #9	75	117	5.00		0.3000	-999
		0005	Northwest Calif-01	_	0912	0610	Ferndale City Hall	133	1023	5.50		0.3000	-999
7	6	0006	Imperial Valley-02		0519	0437	El Centro Array #9	75	117	6.95		0.3000	0.072
8	7	0007	Northwest Calif-02		0209	0945	Ferndale City Hall	133	1023	6.60		0.3000	-999
9		8000	Northern Calif-01		1003	1614	Ferndale City Hall	133	1023	6.40		0.3000	-999
10		0009	Borrego		1021	1622	El Centro Array #9	75	117	6.50		0.3000	-999
11		0010	Imperial Valley-03		0124	0717	El Centro Array #9	75	117	5.60	U	0.3000	-999
12	11	0011	Northwest Calif-03		1008	0411	Ferndale City Hall	133	1023	5.80	Mw	0.3000	-999
13		0012	Kern County	1952	0721	1153	LA - Hollywood Stor FF	326	24303	7.36	Mw	0.3000	0.145
14	13	0012	Kern County		0721	1153	Pasadena - CIT Athenaeum	499	80053	7.36	Mw	0.3000	0.145
15		0012	Kern County	1952	0721	1153	Santa Barbara Courthouse	92	283	7.36	Mw	0.3000	0.145
16	15	0012	Kern County	1952	0721	1153	Taft Lincoln School	148	1095	7.36	Mw	0.3000	0.145
17	16	0013	Northern Calif-02	1952	0922	1141	Ferndale City Hall	133	1023	5.20	Mw	0.3000	-999
18	17	0014	Southern Calif	1952	1122	0746	San Luis Obispo	147	1083	6.00	U	0.3000	-999
19	18	0015	Imperial Valley-04		0614	0417	El Centro Array #9	75	117	5.50	U	0.3000	-999
20	19	0016	Central Calif-01	1954	0425	2033	Hollister City Hall	135	1028	5.30	U	0.3000	-999
21		0017	Northern Calif-03		1221	1956	Ferndale City Hall	133	1023	6.50	U	0.3000	-999
22	21	0018	Imperial Vallev-05		1217	0607	El Centro Arrav #9	75	117	5 40	IJ	0.3000	-999

Data and Metadata can be downloaded

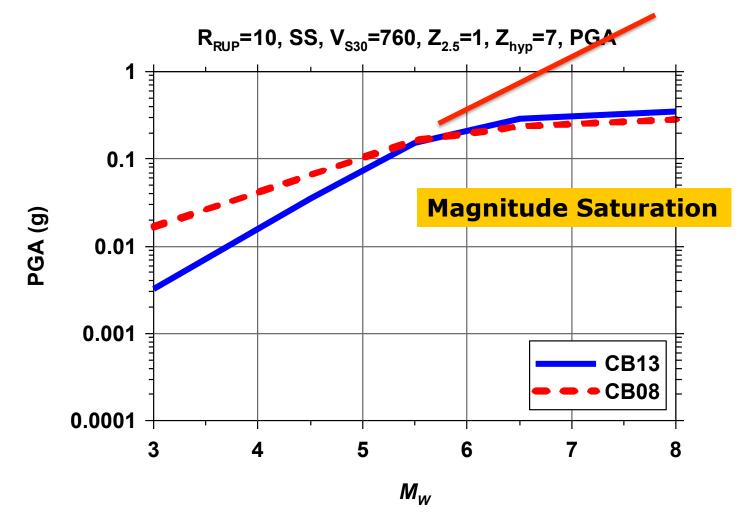
Typical functional form of GMPEs

$$\ln Y = b_1 + b_2 (M - 6) + b_3 (M - 6)^2 + b_5 \ln r + b_V \ln \frac{V_S}{V_A}$$
$$b_1 = \begin{cases} b_{1SS} & \text{for strike-slip earthquakes;} \\ b_{1RS} & \text{for reverse-slip earthquakes;} \\ b_{1ALL} & \text{if mechanism is not specified.} \end{cases}$$

$$r = \sqrt{r_{jb}^2 + b^2}$$

$$\ln Y = \begin{cases} \ln PGA; & PSA < PGA \text{ and } T < 0.25 \text{ s} \\ f_{mag} + f_{dis} + f_{fit} + f_{hog} + f_{site} + f_{sed} + f_{hop} + f_{dip} + f_{atn}; & \text{otherwise} \end{cases}$$

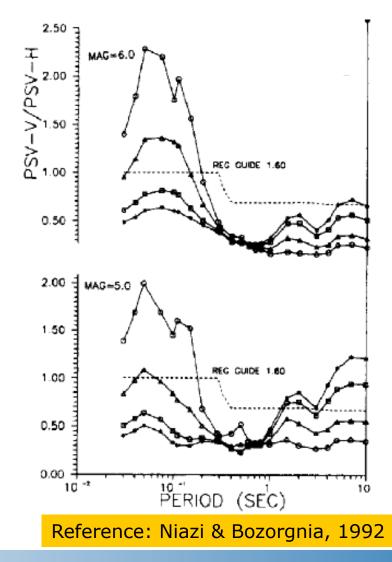
$$f_{mag} = \begin{cases} c_0 + c_1 \mathbf{M}; & \mathbf{M} \le 4.5 \\ c_0 + c_1 \mathbf{M} + c_2 (\mathbf{M} - 4.5); & 4.5 < \mathbf{M} \le 5.5 \\ c_0 + c_1 \mathbf{M} + c_2 (\mathbf{M} - 4.5) + c_3 (\mathbf{M} - 5.5); & 5.5 < \mathbf{M} \le 6.5 \\ c_0 + c_1 \mathbf{M} + c_2 (\mathbf{M} - 4.5) + c_3 (\mathbf{M} - 5.5) + c_4 (\mathbf{M} - 6.5); & \mathbf{M} > 6.5 \end{cases}$$

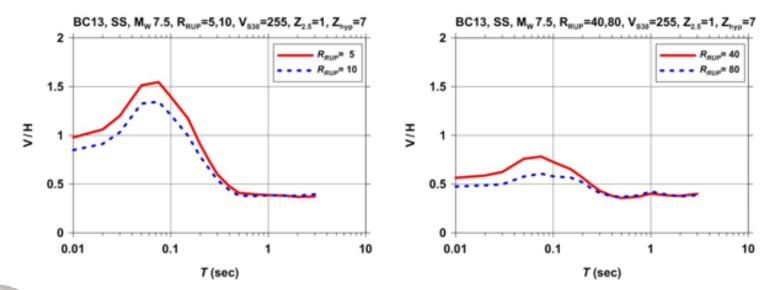

$$f_{dz} = (c_{5} + c_{\delta} \mathbf{M}) \ln \left(\sqrt{R_{ZLP}^{2} + c_{7}^{2}} \right)$$

$$f_{jng} = c_{10} f_{jng,R_{X}} f_{jng,R_{XLP}} f_{jng,A} f_{jng,Z} f_{jng,A} f_{jng,A} f_{jng,Z} f_{jng,A} f_{jng,A}$$

- Most GMPEs are applicable to:
 - M: 3 to 8.5 (strike-slip)
 - Distance: 0 to 300km
 - Hanging wall and footwall sites
 - Soil V_{S30}: 150-1500 m/sec
 - Soil nonlinearity
 - Deep basins
 - Strike-slip, Reverse, Normal faulting mechanisms
 - Period: 0-10 seconds

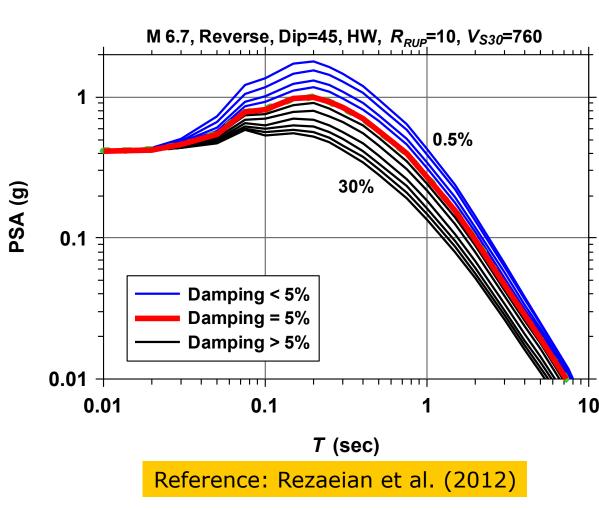
In 2014: Magnitude "saturation" at short periods is now a common feature


- After the Northridge EQ, vertical ground motion attracted attention of engineers because of:
 - High vertical accelerations recorded and,
 - Collapse of bridges and a department store


In 1994 we knew...

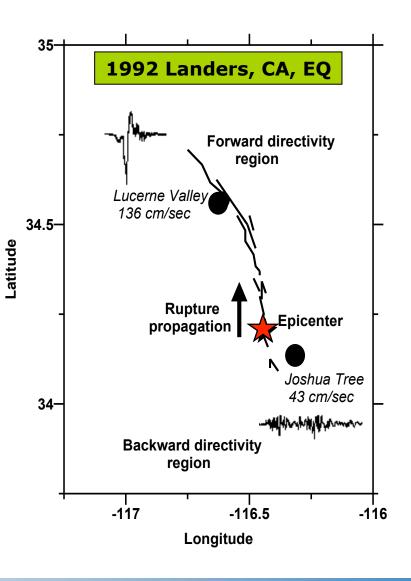
- Vertical / Horizontal spectral ratio (V/H)
 - Is a strong function of distance and period
 - Should not use 2/3 as a scaling factor for V/H

- We have a set of vertical GMPEs as part of NGA-West2
- Qualitatively consistent with previous work
- Much more robust predictions



In 2014: We have robust damping scaling model for response spectra

To scale horizontal and vertical GMPEs for damping other than 5%:


0.5% to 30%

In 2014: Directivity

- We have five directivity models developed in NGA-West2
 - Wide-band and narrowband models
- This effort will continue

In 2014: Directionality of ground motion

- We now know:
- Only for the cases when the site is within 5 km of the fault and spectral period is longer than 0.5 sec, is the orientation of maximum rotated spectral ordinate is more likely to be closer to the strike-normal than the strike-parallel direction
- Beyond these ranges, the angle of the maximum rotated motion is random

Ref: Shahi and Baker, PEER report 2013/10

In 2014: After decades, new NEHRP site factors are proposed

Table 11.4-1 Site Coefficient, Fa

	Mapped Risk-Targeted Maximum Considered Earthquake (MCE _R) Spectral Response Acceleration Parameter at Short Period								
Site Class	$S_{\text{S}} \leq 0.25$	S _S = 0.5	S _S = 0.75	S _S = 1.0	S _S = 1.25	S _S ≥ 1.5			
А	0.8	0.8	0.8	0.8	0.8	0.8			
В	1.0 0.9	1.0 0.9	1.0 0.9	1.0 0.9	1.0 0.9	0.9			
С	1.2 1.3	1.2 1.3	1.1 1.2	1.0 1.2	1.0 1.2	1.2			
D	1.6	1.4	1.2	1.1	1.0	1.0			
E	2.5 2.4	1.7	1.2 1.3	0.9 1.1	0.9 1.0	0.8			
F	See Section 7	11.4.7							

Note: Use straight-line interpolation for intermediate values of S_s . At the Site Class B-C boundary, $F_a = 1.0$ for all S_s levels. If site classes A or B are established without the use of on-site measurements of shear wave velocity, use $F_a = 1.0$.

Courtesy: Jon Stewart & Emel Seyhan

In 2014: New NEHRP site factors are proposed

Table 11.4-2 Site Coefficient, Fv

	Mapped Risk-Targeted Maximum Considered Earthquake (MCE _R) Spectral Response Acceleration Parameter at 1-s Period								
Site Class	$S_{1} \leq 0.1$	S ₁ = 0.2	S ₁ = 0.3	S₁ = 0.4	S ₁ = 0.5	$S_1 \ge 0.6$			
А	0.8	0.8	0.8	0.8	0.8	0.8			
В	1.0 0.8	1.0 0.8	1.0 0.8	1.0 0.8	1.0 0.8	0.8			
С	1.7 1.5	1.6 1.5	1.5	1. 4 1.5	1.3 1.5	1.4			
D	2.4	2.0 2.2	1.8 2.0	1.6 1.9	1.5 1.8	1.7			
E	3.5 4.2	3.2 3.3	2.8	2.4	2.4 2.2	2.0			
F	See Section	See Section 11.4.7							

Note: Use straight-line interpolation for intermediate values of S_1 . At the Site Class B-C boundary, $F_v = 1.0$ for all S_1 levels. If site classes A or B are established without the use of on-site measurements of shear wave velocity, use $F_v = 1.0$.

Courtesy: Jon Stewart & Emel Seyhan

1994 vs 2014

- In 1994: Interactions among GMPE developers were relatively small
- In 2014: There are great constructive interactions among:
 - GMPE developers
 - Other junior and senior researchers
 - Practitioners
 - End users
 - Earth scientists and Engineers

In 2014: GMPE development is now like putting together pieces of a complicated puzzle through a coordinated multidisciplinary <u>Team Work</u>

Results have much higher quality, and more impacts at the national and international levels

2014 and beyondNGA-West3

- Expanding the ranges of applicability of GMPEs
 - Soil with *V_{s30}*<200 m/sec</p>
 - Hard rock with V_{s30}>1000 m/sec
- Refinement of directivity modeling issues
- Foreshock, mainshock, aftershock issues
- More advancement in the prediction of vertical ground motion
- Beyond elastic response spectra
- Refining estimation of standard deviation ("single-station sigma")

2014 and beyond

NGA-East

- For stable continental regions
- **2015**

NGA-Sub

- For subduction regions
- **2016**

Thank You!

