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Liquefaction-induced Ground Deformation

Liquefaction-induced ground deformations are permanent
displacements resulting from earthquakes
* Areas as large as a few square kilometers
* Amplitudes ranging from few centimeters to several meters.

Liquefaction-induced ground deformations have
systematically caused extensive damage to lifelines

Liquefaction-induced ground deformation from past
earthquakes:
* 1999 Koceali, Turkey
* 1999 Chichi, Taiwan
* 1995 Hyogoken-Nanbu, Japan
* 1994 Northridge, California
* 1971 San Fernando, California
* 1964 Niigata, Japan
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1964 Niigata Earthquake
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1971 San
Fernando
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1995 Kobe
Earthquake,
Port Island
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Ground Deformation Database

Earthquake Displacements |Boreholes
1964 Niigata 2498 645
1964 Alaska

1971 San Fernando/ 19994 Northridge 864 967
1983 Nihonkai-Chubu,Japan 2954 142
1987 Superstition Hills 4 108
1979 Imperial Valley 14
1989 Loma Prieta 223
1994 Northridge 1011

1995 Hyogoken Nanbu 8894 5000
1999 Chichi Taiwan

1999 Kocaeli Turkey

Total 16225 6699
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Ground Deformation Database

1971 San Fernando

s CPT

- SPT
/\/ Displalcement (100x)
/\/ Van Norman Complex
Surface soil
[ Artificial_Soil
[-7] Modelo_Formation
[ Older_Alluvium
[E==] Pacoima_Formation
[—7] Pico_Formation
[[Z7] Saugus_Formation

[Z7] Towsley/Pico_Formation
[ ] Towsley_Formation

AL
& 5
Younger_Alluvium
Highway
>

0 1 Kilometers
—_—

N

UNIVERSITY OF TEXAS g*g ARLINGTON Department of Civil Engineering



Ground Deformation Database
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Spatial Analysis of 1964 Niigata
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Spatial Analysis in Port Island, Japan
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Spatial Analysis in Port Island, Japan

Predicted Displacement (cm)
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Regression Models

Models Parameters MR HS W TIS F15D5015 LDI Amax Td leide Stop Hface ZFSmin Ziq

Hamada et al. (1986) M
Youd and Perkins (1987) M 4
Bartlett & Youd (1995);
Youd et al. (2002) 4 2 a bl ) i
Rauch (1997)
Bardet et al. (2002)
Zhang et al. (2004)
Definitions:
M Moment magnitude of earthquake
R Epicentral distance (km)
S Slope (%) of ground surface
H  Thickness (m) of liquefied soil
W Free-face ratio (%)
T,; Thickness (m) of saturated cohesionless soils (excluding depth>20m and > 15% clay content)
Wlth N1 60 15
Fis  Average fine content (% finer than 75 um)
Dsys Average Dy, grain size (mm)in T 5
LDI Lateral displacement index
a,.. Peak horizontal acceleration (g) at ground surface of site
Ty Duration of strong earthquake motions at site (surface acceleration 70.05 g)
L4 Maximum horizontal length (m) from head to toe of lateral spread
Sop  Average slope (%) across surface of lateral spread
H;,.. Height (m) of free face, measured vertically from toe to crest of free face

Zrsmin Average depth (m) to minimum factor of safety in potentially liquefiable soil
Z;,  Average depth (m) to top of liquefied soil.
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MLR Models

e Bartlett and Youd (1995) and Youd et al. (2002)
Free-face conditions:

logD =-16.213+1.532M -1.406log R - 0.012R + 0.3381og S
+0.5401og T + 3.41310g(100 — F,;) — 0.7951og(D50,, + 0.1mm)

Gently sloping ground conditions:
logD =-16.713+1.532M —1.406log R" - 0.012R + 0.592log W

+0.540log 75 + 3.41310g(100 — F5) — 0.795log(D50, + 0.1mm)

Where R* _ 100.89M—5.64 +R

e Bardet et al. (2002)

Free-face conditions
log(D +0.01)=-7.280+1.017M -0.278log R — 0.026R + 0.497log + 0.5581og 7,

Gently sloping ground conditions:
log(D +0.01) =-6.815+1.017M - 0.278log R — 0.026R + 0.45410og S + 0.5581log 7},

N
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MLR Models
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Newmark’s Sliding Block Model

(3y) down-slope

= Newmark, 1965

(3y) up-slope
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= Jibson, 1993; Yegian et al., 1991
» Makdisi and Seed, 1978; Kramer and Smith, 1997

(Rauch 1997)
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Physical Explanation for

Liquefaction-Induced Deformation

Seismic ground motion

, Onset,; of liquefaction

Excees
pore pressure
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Simplified Model of Strength Loss

Strength or Stress Strength or Stress
Shear strength Shear strength
Tt---- Static shear stress - Static shear stress
i .
> Time > Time

Statically unstable slopes, F<I (where F;= 7,/1,)

1
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Example of Unstable Deformation
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onset
* Ground acceleration recorded at Rinaldi Receiving Station during the
1994 Northridge, California, earthquake
* Shear strength reduction takes place at #,= 2 sec
* Slope inclination angle = 5°
* Imitial Factor of Safety F,=0.4,0.9,2.0
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Time histories of mass velocity
and ground velocity
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Time histories of mass displacement

Displacement (m)
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Earthquake contributions to unstable
ground motions

4 Velocity
Earthquake-induced dispEcement 0

,J\ A
v\/\/ WT Time

Earthquake
Ground Velocity End

Instability
Onset

Gravity-induced displacement
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Statistical Model of Unstable Deformation

Monte Carlo Simulations

* 1,062 ground acceleration records
(data from PEER strong-motion database, PGA > 0.1g)

* Oranges from O to 5°, uniform distributed

* F,ranges from O to 1, uniform distributed

* Onset of instability randomly takes place during the duration
of strong motion

30,000 realizations

N

UNIVERSITY OF TEXAS g*g ARLINGTON Department of Civil Engineering




Empirical Probability
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Empirical Probability
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Empirical Probability
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Empirical Probability

Cutoff 9=lcm Cutoff 6,=10cm

12000 —
]

o

9000 z

g =
: 2
= 6000 S
O —
= (a™
- g
3000 2

o,

=

0

0
0.1 0.2 03 04 05 0.6 0.7 0.8 09 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
PGA (g) PGA (g)
= Entire "= Y=1 Subset ™ Empirical Probability
Dataset

N

UNIVERSITY OF TEXAS g*g ARLINGTON Department of Civil Engineering




Empirical Probability
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PGV-based model
for liquefaction-induced deformation

Epicentral
Earthquake g umiber M Focal Depth Distance PGy Note
of Cases w (km) (cm/s)
(km)

1906 San Francisco 2 7.9 8 13, 14 56, 55 Campbell 1997
1964 Alaska 3 9.2 25 35,100 48, 23 Campbell 1997
1964 Niigata 160 7.5 40 21 58 Kanno et al. 2006

1971 San Fernando 5 6.6 8.4 14 56 Liu and Heaton 1984

dgss Nihoka- 72 7.7 15 94 60 Kanno et al. 2006
Chubu

Regression analysis

log,,(D +0.01m) = 0.3641og,,(S) + 1.461log,,(PGV) + 0.4561og,,(T) —2.590

N
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Summary (Part 1)

* A physical model was developed to distinguish the
circumstances for which earthquakes impact the motions of
gently sloping grounds

« Gently sloping grounds

= Move largely unaffected by earthquake shakings in case of severe
loss in shear strength,

= Are influenced by pulses of earthquake ground velocity in case
moderate reduction in shear strength

« The PGV-based model predicts reasonably well case
histories of liquefaction-induced deformation.
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Capacity and Demand

Capacity

Failures

Y

Complete
Demand Failure

” Years
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2013 Report Card for America’s Infrastructure

AMERICA’S
INFRASTRUCTURE

Each category was evaluated on the basis of capacity, condition, funding,
future need, operation and maintenance, public safety and resilience. METHODOLOGY >
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Leaks and Blowouts since 2001
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Blowouts and leaks in Los Angeles
during summers 2001-2012
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Cumulative numbers of blowouts between
2001 and 2013.
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Monthly pipe blowouts
and ambient temperatures in LA
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Pipe length distribution in terms of years in
service and material types in LADWP
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lllustration of harvesting framework
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Distributions g[n] at times t and t + At.
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Impulse stressor: (a) Variation of stressor N, and
(b) resulting variation of cumulative number of
breaks B and break rate

Stressor N

N +AN (a)

Break rate

B, Cumulatice number of breaks

Time

N
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Triangular pulse: (a) variation of stressor N, and
(b) resulting variation of cumulative number of
breaks B and break rate

Stressor N

Ny+AN

Break rate

B, Cumulatice number of breaks

Time

N
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Unsymmetrical cosine pulse: (a) variation of
stressor N, and (b) resulting variation of
cumulative number of breaks B and break rate
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Fatigue curves for grey cast iron pipes
(data after Mohebbi et al., 2009)
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Variation of crack length with fatigue

cycles In grey cast iron
(Data after Socie and Fash, 1982)
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Observed and simulated variations of
monthly number of blowouts in LADWP
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Observed and simulated variations of

stressor N from 2002 till 2013.
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Individual cosine pulses of stressor N

2002 2003 2004 2005 2006

2007 2008

2009

2010 2011 2012

2013

\
A/

vV \/

CONOAUAWNRO
&

N
=

Individual Cosine Pulses of Stressor N

WNNNNNNNN
cwVwooNOTULTPA,WN

N

UNIVERSITY OF TEXAS g ARLINGTON

Department of Civil Engineering




Conclusion (Part 2)

« Urban water systems worldwide harbor numerous old
and fragile pipes that often break dramatically in
temporal clusters.

* A harvesting framework is introduced to analyze the
time variations of disruptive pipe breaks that can help
water agencies better understand clustered pipe
failures.

e |t assumes a cohort of pipes weakened state due to
fatigue and corrosion.

* The harvesting model simulates an observed time
series of monthly pipe breaks and has both
explanatory and predictive power.
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Conclusion

« Ground deformation is certainly one of the main
causes of lifeline failures during earthquakes

« Ground deformation although complex when
associated with reduction in shear strength and
liguefaction correlates best with PGV

 Lifelines performance during earthquakes is not
only influenced by earthquake shaking intensity
but also by their pre-earthquake conditions
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