Ground Failure and Geotechnical Impacts on Lifeline Performance, Northridge and Beyond

Jean-Pierre Bardet, Fang Liu (Tongji University) And Richard Little (Rensselaer Polytechnic Institute)

> 20th Anniversary of Northridge Earthquake January 17, 2014

Outline

Earthquake Ground Deformation Ground Deformation Models Lifelines Performance

Liquefaction-induced Ground Deformation

Liquefaction-induced ground deformations are permanent displacements resulting from earthquakes

- Areas as large as a few square kilometers
- Amplitudes ranging from few centimeters to several meters.

Liquefaction-induced ground deformations have systematically caused extensive damage to lifelines Liquefaction-induced ground deformation from past earthquakes:

- 1999 Koceali, Turkey
- 1999 Chichi, Taiwan
- 1995 Hyogoken-Nanbu, Japan
- 1994 Northridge, California
- 1971 San Fernando, California
- 1964 Niigata, Japan

1964 Niigata Earthquake

1971 San Fernando Earthquake

Van Norman Complex 1994 Northridge Earthquake

1995 Kobe Earthquake, Port Island

Earthquake	Displacements	Boreholes
1964 Niigata	2498	645
1964 Alaska		
1971 San Fernando/ 19994 Northridge	864	567
1983 Nihonkai-Chubu, Japan	2954	142
1987 Superstition Hills	4	108
1979 Imperial Valley		14
1989 Loma Prieta		223
1994 Northridge	1011	
1995 Hyogoken Nanbu	8894	5000
1999 Chichi Taiwan		
1999 Kocaeli Turkey		
Total	16225	6699

UNIVERSITY OF TEXAS 🔆 ARLINGTON

Spatial Analysis of 1964 Niigata

UNIVERSITY OF TEXAS 🔆 ARLINGTON

Spatial Analysis in Port Island, Japan

SPT Vector (x50) Kobe bound 500 Meters

Location of measured displacement and SPT borehole test

Spatial Analysis in Port Island, Japan

UNIVERSITY OF TEXAS 🖈 ARLINGTON

Regression Models

Parameters	М	R	Η	S	W	T_{15}	F_{15}	D_{5015}	LDI	a _{max}	T _d	$L_{\rm slide}$	$S_{ m top}$	$H_{\rm face}$	Z _{FS min}	$Z_{\rm liq}$
Hamada et al. (1986)			V													
Youd and Perkins (1987)	$\overline{\mathbf{A}}$	$\overline{\mathbf{V}}$														
Bartlett & Youd (1995);																
Youd et al. (2002)	M			≥		V										
Rauch (1997)	\blacksquare	\blacksquare								\checkmark	\checkmark	V	\checkmark	$\mathbf{\nabla}$	\checkmark	
Bardet et al. (2002)	☑	\blacksquare		$\mathbf{\nabla}$	\checkmark	\checkmark										
Zhang et al. (2004)				$\mathbf{\nabla}$	\checkmark				\checkmark							
Definitions:																
M Moment magnitude of earthquake																
R Epicentral distance (km)																
S Slope (%) of ground su	irfac	e														
H Thickness (m) of liquefied soil																
W Free-face ratio (%)																
T_{15} Thickness (m) of saturated cohesionless soils (excluding depth>20 m and > 15% clay content)																
with N ₁₆₀ <15																
F_{15} Average fine content (% finer than 75 μ m)																
D_{5015} Average D_{50} grain size (mm) in T_{15}																
LDI Lateral displacement index																
$a_{\rm max}$ Peak horizontal acceleration (g) at ground surface of site																
$T_{\rm d}$ Duration of strong earthquake motions at site (surface acceleration ?0.05 g)																
L_{slide} Maximum horizontal length (m) from head to toe of lateral spread																
S_{top} Average slope (%) across surface of lateral spread																
H_{face} Height (m) of free face, measured vertically from toe to crest of free face																
Z_{FSmin} Average depth (m) to minimum factor of safety in potentially liquefiable soil																
Z_{liq} Average depth (m) to top of liquefied soil.																

UNIVERSITY OF TEXAS 🔆 ARLINGTON

MLR Models

• Bartlett and Youd (1995) and Youd et al. (2002) Free-face conditions:

$$\log D = -16.213 + 1.532M - 1.406 \log R^* - 0.012R + 0.338 \log S$$

+0.540 \log T₁₅ + 3.413 \log(100 - F₁₅) - 0.795 \log(D50₁₅ + 0.1mm)

Gently sloping ground conditions:

 $\log D = -16.713 + 1.532M - 1.406 \log R^* - 0.012R + 0.592 \log W$

 $+0.540\log T_{15} + 3.413\log(100 - F_{15}) - 0.795\log(D50_{15} + 0.1mm)$

where $R^* = 10^{0.89M - 5.64} + R$

• Bardet et al. (2002)

Free-face conditions $\log(D + 0.01) = -7.280 + 1.017M - 0.278\log R - 0.026R + 0.497\log W + 0.558\log T_{15}$

Gently sloping ground conditions:

 $\log(D + 0.01) = -6.815 + 1.017M - 0.278\log R - 0.026R + 0.454\log S + 0.558\log T_{15}$

UNIVERSITY OF TEXAS 🔆 ARLINGTON

MLR Models

Bartlett and Youd (1995)

Bardet et al. (2002)

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Outline

Earthquake Ground Deformation Ground Deformation Models Lifelines Performance

Newmark's Sliding Block Model

Makdisi and Seed, 1978; Kramer and Smith, 1997

ARLINGTON

UNIVERSITY OF TEXAS 🖈

(Rauch 1997)

Physical Explanation for Liquefaction-Induced Deformation

After Towhata et al. 1999

Simplified Model of Strength Loss

Statically unstable slopes, $F_i < 1$ (where $F_i = \tau_f / \tau_0$)

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Example of Unstable Deformation

- Ground acceleration recorded at Rinaldi Receiving Station during the 1994 Northridge, California, earthquake
- Shear strength reduction takes place at $t_i = 2$ sec
- Slope inclination angle = 5°
- Initial Factor of Safety $F_i = 0.4, 0.9, 2.0$

Time histories of stress ratio of a 5° slope

UNIVERSITY OF TEXAS 🖈

ARLINGTON

Time histories of mass velocity and ground velocity

UNIVERSITY OF TEXAS 🔆 ARLINGTON

Time histories of mass displacement

Earthquake contributions to unstable ground motions

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Statistical Model of Unstable Deformation

Monte Carlo Simulations

- 1,062 ground acceleration records (data from PEER strong-motion database, *PGA* > 0.1g)
- θ ranges from 0 to 5°, uniform distributed
- F_i ranges from 0 to 1, uniform distributed
- Onset of instability randomly takes place during the duration of strong motion

30,000 realizations

UNIVERSITY OF TEXAS 🖈 ARLINGTON

UNIVERSITY OF TEXAS 🖟 ARLINGTON

PGV-based model for liquefaction-induced deformation

Earthquake	Number of Cases	$M_{_W}$	Focal Depth (km)	Epicentral Distance (km)	PGV (cm/s)	Note
1906 San Francisco	2	7.9	8	13, 14	56, 55	Campbell 1997
1964 Alaska	3	9.2	25	35, 100	48, 23	Campbell 1997
1964 Niigata	160	7.5	40	21	58	Kanno et al. 2006
1971 San Fernando	5	6.6	8.4	14	56	Liu and Heaton 1984
1983 Nihokai- Chubu	72	7.7	15	27	60	Kanno et al. 2006

Regression analysis

 $\log_{10}(D + 0.01m) = 0.364 \log_{10}(S) + 1.461 \log_{10}(PGV) + 0.456 \log_{10}(T) - 2.590$

UNIVERSITY OF TEXAS 🖟 ARLINGTON

PGV-based model for regional lateral deformation induced by liquefaction

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Summary (Part 1)

- A physical model was developed to distinguish the circumstances for which earthquakes impact the motions of gently sloping grounds
- Gently sloping grounds
 - Move largely unaffected by earthquake shakings in case of severe loss in shear strength,
 - Are influenced by pulses of earthquake ground velocity in case moderate reduction in shear strength
- The PGV-based model predicts reasonably well case histories of liquefaction-induced deformation.

Outline

Earthquake Ground Deformation Ground Deformation Models Lifelines Performance

Capacity and Demand

2013 Report Card for America's Infrastructure

LEARN MORE >

Hartsook St

Corbin & Kittridge

Coldwater Cyn

C.

CAUTION

CANDING

2.28

Burbank Blvd

Patch Blowouts of Cast Iron

Leaks and Blowouts since 2001

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Monthly number of blowouts and leaks in LADWP

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Blowouts and leaks in Los Angeles during summers 2001-2012

UNIVERSITY OF TEXAS 🖈 ARLINGTON

Cumulative numbers of blowouts between 2001 and 2013.

Monthly pipe blowouts and ambient temperatures in LA

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Pipe length distribution in terms of years in service and material types in LADWP

Illustration of harvesting framework

Distributions q[n] at times t and t + Δt .

UNIVERSITY OF TEXAS 🖈 ARLINGTON

Impulse stressor: (a) Variation of stressor N, and (b) resulting variation of cumulative number of breaks B and break rate

Time

Triangular pulse: (a) variation of stressor N, and (b) resulting variation of cumulative number of breaks B and break rate

Time

Unsymmetrical cosine pulse: (a) variation of stressor N, and (b) resulting variation of cumulative number of breaks B and break rate

Fatigue curves for grey cast iron pipes (data after Mohebbi et al., 2009)

UNIVERSITY OF TEXAS 🔆 ARLINGTON

Variation of crack length with fatigue cycles in grey cast iron (Data after Socie and Fash, 1982)

UNIVERSITY OF TEXAS 🔆 ARLINGTON

Observed and simulated variations of monthly number of blowouts in LADWP

UNIVERSITY OF TEXAS 🖗 ARLINGTON

Observed and simulated variations of stressor N from 2002 till 2013.

Individual cosine pulses of stressor N

UNIVERSITY OF TEXAS 🖟 ARLINGTON

Conclusion (Part 2)

- Urban water systems worldwide harbor numerous old and fragile pipes that often break dramatically in temporal clusters.
- A harvesting framework is introduced to analyze the time variations of disruptive pipe breaks that can help water agencies better understand clustered pipe failures.
- It assumes a cohort of pipes weakened state due to fatigue and corrosion.
- The harvesting model simulates an observed time series of monthly pipe breaks and has both explanatory and predictive power.

Conclusion

- Ground deformation is certainly one of the main causes of lifeline failures during earthquakes
- Ground deformation although complex when associated with reduction in shear strength and liquefaction correlates best with PGV
- Lifelines performance during earthquakes is not only influenced by earthquake shaking intensity but also by their pre-earthquake conditions