Life-Cycle Cost and Performance Comparisons of Different Code-Complaint Systems

Vesna Terzic Stephen A. Mahin Mary Comerio

Pacific Earthquake Engineering Research Center UC Berkeley

Building codes are minimum standards for public safety

Stated purpose:

"...to safeguard against major structural failures and loss of life, not to limit damage or maintain function."

Designed to protect life in extreme event, but damage expected

Nonstructural Elements Threaten Life Safety, and Damage is Disruptive and Expensive

PBEE used to estimate losses of various code compliant systems

PBEE used to estimate losses of various code compliant systems

- Performance, annualized losses, and return on investments are compared
- Occupancy type: office building
- The building owner rents the space
- Life-cycle cost analysis performed considering 3 hazard levels (50%/50yrs, 10%/50yrs, 2%/50yrs)
- Life-cycle cost analysis was based on:
 - Initial construction cost
 - Expected repair cost
 - Minimum monetary loss due to business interruption

Isolation Systems Triple Friction Pendulum Bearings

Isolator Properties	DBE	MCE
Effective period	2.77 sec	3.07 sec
Effective damping	24.2 %	15.8 %
Isolator displacement	12.7 in.	24.3in.

Construction Building Costs

Work-flow of the analysis

Numerical Model and Methods

- Analysis performed with OpenSees
- RHA performed on 2D frames
- Leaning column was modeled to account for P-Δ effects from the gravity columns
- Load: gravity loads & vertical and horizontal component of excitation
- Beams, columns, and braces modeled with nonlinear force-based fiber elements with lowcycle fatigue failure capabilities
- Damping modeled with Rayleigh damping utilizing damping ratio of 3%

Structural Response: Peak median drift vs. acceleration

Structural Response: Peak median drift vs. acceleration

Structural Response: Median Residual Drifts

Repair Costs for scenario events: Frequent Earthquakes (50%/50-yrs)

Repair Costs for scenario events: Rare Earthquake (10%/50-yrs)

Repair Costs for scenario events: Very Rare Earthquakes (2%/50-yrs)

PEER

10%/50-years

10%/50-years

Repair Costs for scenario events: Loss Ratio

Loss Ratio = $\frac{\text{Repair Cost}}{\text{Replacement Cost}}$

Replacement Cost = 1.2 x Construction Cost

Business Downtime

Repair time for functional recovery

Business Downtime

Approximate annualized losses

Conclusions

- Losses of different code compliant structural system range from \$4,000 to \$90,000
- Nonstructural damage dominates the losses
- PBEE methodology should be used in design to mitigate damage, reduce the losses, and to optimize owners return on investment
- **Question:**

Can we afford to seismically isolate?

Answer:

Can we afford not to?

Building Downtime

Holistic risk-oriented view: Performance-Based Seismic Design

Total losses

Indirect and Direct Losses: Oakland

Return on Investments

- Inflation rate is assumed to be 3%
- Return on investments is:
 - BI-OCBF relative to SCBF (investment was 6% of the construction cost of SCBF):
 - □ 3.4% for Los Angeles
 - 4.6% for Oakland
 - BI-IMRF relative to SMRF (investment was 2.3% of the construction cost of SMRF):
 - 12.3% for Los Angeles
 - 10.1% for Oakland

