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Outline

s Motivation and field evidence

= Analysis methods
= Equivalent Linear
= Nonlinear
= Solution of equation of motion & soil modeling:

= Soil properties and nonlinear curves
s Viscous and hysteretic damping
= Matching modulus reduction & damping curves
s Implied shear strength
m Porewater pressure generation

= Miscellaneous issues:
= Layer thickness
s QOutcrop vs within motion
= Input motion time step and response spectrum calculation

s Criteria for EL-NL selection
= Concluding Remarks
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Impacts - Site Effects

= Ground motions well recorded (157
recordings on six networks)

= Local damage correlated with site
amplification in Sherman Oaks, Santa
Monica, and west LA

= Nonlinear site effects
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Impacts - Field Evidence

Station - USGS Class
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AMPLIFICATION OF GROUND
MOTION
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Figure 2-15a Distribution of ground motions for selected strong-motion stations: north component of

acceleration. Time histories are plotted close to the associated site. Time and amplitude scales are

W shown to the right. Shaded areas represent alluvial basins and valleys.
|
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Figure 2-21 Comparison of acceleration waveforms at five ground-response stations within 25
km of the epicenter of the Northridge earthquake. Tarzana, Arleta, and Sylmar County Hospital

are in the San Fernando Valley. Newhall is north of the Valley and Santa Monica is located to the
W south in the Los Angeles basin.
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Impacts - Northrldge Slte Effects
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Figure 2-23 Comparison of accelerograms and spectra (5% damped) for the two Northridge after-

shock records from the Tarzana CSMIP station and a nearby reference site off the hill and about

120 meters from the Tarzana site. Peak accelerations of 0.26g at Tarzana and 0.25g at the refer-

ence site were recorded during the M5.3 aftershock on March 20, 1994. Peak accelerations of

0.12g at Tarzana and 0.04g at the reference site were recorded during the M4.4 aftershock of
W January 27.
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Impact - Seismologists' recognition
of non-linear site effects

Finally, the conclusion of significant nonlinearity is good news in
that the amplifying effects of sediments, on average, are apparently
not as great as implied by weak-motion studies. However, it brings
into question the use of empirical Green’s functions (based on
recordings of small earthquakes) to study or predict strong ground
motion at sediment sites. 6

Nonlinear ground-motion
amplification by sediments
during the 1994 Northridge
earthquake

Amplification
Ll

Edward H. Field*, Paul A. Johnsonti, Igor A. Beresnevs 2
& Yuehua Zengl
‘I .
Nature — Dec 1997 0
0 1
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Impacts - significance of local site response

(ResOlution of Site Response
Issues from the Northridge
Earthquake) is a government-
academia-industry research
collaboration aimed at improving
engineering models of earthquake
ground motion through collection,
synthesis, and dissemination of
data on subsurface conditions at
key Strong Motion (SM) station
sites.

-Borehole data

-Geophysical data

-Laboratory testing

Circles show energy
amplification
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Outcomes

= Extensive laboratory testing of dynamic
response of soils (Darendelli and Meng
Curves, Prof. K. Stokoe)

= Developments in 1-D nonlinear site
response
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Site Response Analysis

Site effects

e

» Frequency Domain -'wl
oacl Ll g g
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. ) Modelo Ramberg Osgood
» Time Domain R= 181
a=4.39

Complexity of the 1v=0.00278
problem: L]

.. 1) Dynamic Soil Properties

> 2D GROUND
.’ 3::) et Path

¢ Seismic hazard assessment

Source

Wave propagation

WAVE PROPAGATION-+N THE

Surficial
layers

WNJV“’*" 1-D site response analysis for practical engineering applications.
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Site Response Analysis

EL

* Frequency Domain Methods / Equivalent-Lipgar (a.k.a SHAKE)
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Site Response analysis —EL

= Advantages:
= Robust procedure
= Widely used
s Extensive evaluation

= Issues

= Variation in stiffness with strain amplitude?

s Results under large strains or strong ground
motion?

= Evaluation of pore water pressure generation?
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Site Response Analysis - NL

1D Wave Propagation — Time Domain Solution

Equation of Motion:

[ Y+ [C R+ [ K e = | i i,

[&]}: DA hipasz et — NoxstmedotmnRggalculated in each
RuaggigidDaardinglculation
Dxhibftsimpdifert yndejedndent behavior
HFreperbudyc IMiepehde Rambded
Osgood)
Modulus Reduction

W’\\MN" Hysteretic Damping
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NL site response analysis - Barriers
Once upon a time...

Inconsistent implementations

Usage protocols

Viscous damping

Hysteretic damping when using Masing Rule
Input motions

Results that significantly vary from equivalent
linear analysis

Analysis time

...greater user skill is required

.
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Discretization for NL - Site Response Analysis
1D Wave Propagation — Time Domain Solution

Numerical Solution:

A
Layer
: G
1’ IOI
h X
hZ
N 2
A
h G,,p,
3 3 G, 0,

N
SYMPOSIUM

After Matasovic (1994)
— Y

1 k¢

(ml/2+m2/2)

ky,c,

<m2/2+m3/2)
ks, c,

1 (LS| |l
T[T

Laver Properties

G: shear modulus

p:  density

Vs: shear wave velocity
h: thickness

Equivalent Lumped Mass System

k: stiffness
c: viscous damping
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Simplified Shear Model for NL - SRA

1D Wave Propagation — Time Domain

Solution Modified Kondner-Zelasko
:Jj A AGsecl G, (MKZ) model (Matasovic 1993)
| @ r-—1"
Y 1+ ()/)
Initial Iy
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Curve > 2°GO°(}/ 2)/"6")
- , ] » () - + T,
~N 1 \ 2 Y (%) y—y 5
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Viscous and Hysteretic Damping

* Small strain damping calculated using Rayleigh damping 1s
frequency dependent — Inconsistent with available
experimental data and current assumptions in damping curves.

» Use of extended Masing rules makes it difficult to represent
simultaneously the observed changes of stiffness and energy
dissipation (damping).

« Cumulative effects for softer or deeper soil profiles (e.g. New
Madrid Seismic Zone, Sacramento River Delta) or large strain
levels
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Viscous Damping - Rayleigh Damping

Dynamic Equation N-l

i A=l )= Ja (M1 &)

10 1, 2 or more control
OD .
§ frequencies/ modes can be
g included
5
B
&
3
§ (I)Ver-damped
®)
“ ] ; T’ Frequency Independent

0.1 1 10
Erequency [Hz] Under-damped
Number of Modes in Rayleigh Damping
=+ =1Mode = = 2 Modes 4 Modes Target
WA

.
w.northridge20.org



Frequency-Independent Viscous Damping

Formulation to construct the damping matrix

N -1 N -1

[c]=[M];ab (T[] =[M]ZO 4, D D =[M]Zoal/zq>wq>-l

4

é: 4;11 zab(z f)z ”fn [al/z(zﬂf )] ;al/Z
( — a4y, =46,
D S

Small strain damping independent of the
frequency — experimental results

W (Phillips and Hashash 2009, SDEE)
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Viscous Damping

8
New Small Strain Damping s |2
Example: Linear Elastic o 6 A
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Hysteretic Damping
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Hysteretic Damping

/'"1){ Ymey New F(y,
Load Curve
_— Gy -y :
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Unlload CRrlead
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Hysteretic Damping
Non-Masing Rule Criteria

Use a Modulus Reduction Factor MRDF:

New Model G \”

Vm

F(y,)=p-p:|1- Sy b -
R™=0.95

GO

, ’=0. © Vucetic & Dobry 1991 -
0.90 \ ‘ PI =0 - Target
‘ | Seed & Idriss 1970 - Sand

2 0.80 Mean - Fit
2 2 R’=0.99
M\pg 4 \ \ \H k. & Seed & ldriss 1970 - Sand
- Free Parameters £ 070 R0 Mean - Target
i R
: : I ! - - -+ Zhang et al. 2005 -
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N\_TL\ \i\ . Fit
) % <ol A Zhang et al. 2005 -

(Phillips and Hashash 2009, Quatornary Soil PL= 0 -
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Spectral Acceleration - S, - [g]

Viscous and Hysteretic Damping

New Complete Model N
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Implied Soil Strength At Large Strains

-Large strains in soft soils and
due to strong shaking.

-Need for better resolution of
implied strength or friction angle.

-Stewart and Kwok (2008)

Suggested hybrid procedure for
equivalent linear approach
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Implied Soil Strength At Large Strains

Iterative Procedure for NL backbone

Ly
2)
3)

4)

S)

curve.

Fit the target using MRDF model.

Compute the implied soil shear strength
Underestimation: implied shear strength or
friction angle is larger than the target value
Overestimation: implied shear strength or
friction angle is lower than the target value
Fit the modified modulus reduction curve (Step
3) and the damping curve obtained in Step 1
using the MRDF procedure.

Calculate the implied shear strength for the
fitted curve using the aforementioned
equations. If the implied shear strength is
significantly higher or lower than the target
value repeat Steps 3-5.

L0

Need new functional forms and improved procedures

0.8

0.6

G/G,
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0.2

0
b) 25

[3*]
(=}

Damping -&- [%]
o

Shear Stress -t-[kPa]

N

4 6 8 10

Shear Strain -y- [%]

= = Original Curve
— - —  Target Shear Strength -7,

Manually Fit Step 3
Final Fit Step 5



A new simple nonlinear model with
input of soil strength

Under development in DEEPSOIL



Overburden Pressure Dependent Properties

1 T T T
Reference strain 0 8e
_ . Laird & Stoke (M d ~
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Overburden Pressure Dependent Properties
1000 m Soil Column 100 m Soil Column

0.1 | | | | 0.1 | | | |
Soil Column: 1000 m _ Soil Column: 100 m
C - 2 0.05 - -
g s
i =
S . g .2 0
D Amplificati 8
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= . Frequency =
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Porewater Pressure Generation

MRDF PWP Generation
= Generation of excess porewater pressures results
in @ reduction of soil stiffness, represented by a

modulus degradation model and stress
degradation model.

o=NT-t for 4IG¢,0ir (Matasovic 1993)

t=s(ydc—yltvp)Tr
= Combine with Non-Masing Rule adaptation
=F(yim )[2-GI0 -0LCG (y—yirev /2 ) /1+F (4G /odT )Ts (y—

wirev /2-yvir )Ts —GI0 -0lG - (y—ydrev ) /1+4(086G /odt )Ts (vdm /
wWr )ls |+ GG - (y—yirev ) /1+ 404G /it )Ts (ydm /yir )Ts +

rdreg i
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Pore Pressure Generation and
Dissipation Models

Stress-based pore pressure generation models
Seed et al. (1975) and Booker et al. (1976)

1

2 | N2
r, = —\-Sin E—
Ny,

Strain-based pore pressure generation models
Vucetic and Dobry. (1988)
u* _ pfFN(}/c _7tvp)tv
N 1+f.F°N.(7/c_}/tvp)

G" =Gy l-uy
W’*" T =r-(1—u;)
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Porewater Pressure Dissipation

GMP Energy-Based PWP Dissipation (Green et. al 2000)

= Relates generation of excess pore pressure to the
energy dissipated per unit volume of soil

o0
[e)

Energy dissipated per unit
volume W, and ‘pseudo energy
capacity’ (PEC)

riu=vVWlis /PEC

o, -[kPa]

SN

0
/T
-40 / /’r“t
A 2 /a
Wis=1/20'40 }i=1Tn—1#8(7lA1 + rds vdi+1 —yli
T2 s 04 0 0.4 0.8
(Berrill and Davis 1985) Axial strain - ¢ -[%]

In(PEC) ={F(C<35% :exp(ci3 -Dir) te = -0.597, ¢, = 0.312
4 FC=35% :cdl FCTcl2 +exp(cd3 -  c;=0.0139, and ¢, = -1.021

1atoric Stress-

I
OIrN + cl4 (Polito et al. 2008)
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ge20.org




Miscellaneous Considerations

* Maximum Layer Thickness f, = LAY S o
4H, 4f

ayer

» Elastic vs Rigid Base <>outcrop vs within motion
(See Kwok et al. 2007)

= If only outcrop motion is available, we
need to use elastic base: since
outcrop motion doesn't consider soil-
rock interaction, we need to use
elastic base to account for it.

SHAKEO04

Nonlinear Code (Outcropping Motion as Input + Elastic Base)
= Nonlinear Code (Within Motion as Input + Elastic Base)

— + — Nonlinear Code (Within Motion as Input + Rigid Base)

- If W|th|n motlon |S avallable, we need O Nonlinear Code (Outcropping Motion as Input + Rigid Base)
to use rigid base: since within motion SRS A U A A I M L
already considers soil-rock interactior
(e.g. vertical array), we need to use
rigid base to avoid accounting for soil
rock interaction twice.

_
orthridge20.org
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Effect of input time step

Nonlinear soil model with viscous and hysteretic

damping

Spectral Acceleration, S, (g)

a

b

25

2.0

1.5

l fyq At=0.02sec

&

At=0.02sec

!
t\'yq
e T T

FrrerrT T

10 1 100

Frequency, f* (Hz)

A |
10 1

Frequency, f (Hz)

Vs

—2&— Equivalent Linear At = 0.005 sec
Equivalent Linear At = 0.020 sec

— -~ - - Non-Linear At = 0.005 sec
- =©=-- Non-Linear At = 0.020 sec

EL (freq. domain) and NL (time domain) solutions are similar for At =

0.005 sec

Time step effects are important for time-domain analysis.
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When is NL site response analysis
needed?

Equivalent Linear vs Nonlinear



Previous studies — NL vs. EL

= Matasovic and Hashash (2012)

s Survey: for some users NL when vy, > 1%

= Kaklamanos et al. (2013)
= 100 KiK-net downhole arrays

in Japan.

= Compared recordings and
estimated accelerations (by
linear and equivalent-linear

analyses)

(@

Maximum shear strain, ¥, (%)

01 -
§ EQUIVALENT-

0.001

1 NONLINEAR ANALYSES

NECESSARY Equivalent-

T | linearto

T nonlinear
R L transition

1 ANALYSES
{ SUFFICIENT

0.01 -

zone

LINEAR

R

Linear threshold

LINEAR AND
EQUIVALENT-LINEAR
ANALYSES SUFFICIENT

0.01 0.1 1 10

Spectral period, T (s)

Ymax COMputed from site response analysis.
WW Both studies do not provide predictive tools.
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Recommendations - est. strain: PGVin/Vs30

s Based on Safl/SaNL = 0.7 and 0.9.

] |

= Three regions (EL sufficient, transition o Sa/Sa—p7| [
zone, and NL necessary) in terms of\ & Sa/sa-08) |
V... and period. . ? ST = 09)]
"E _% E:;ﬂiﬁ?ol:ll IQOI’IC
EL sufficient — NL not needed. §
Transition zone - equal weight for EL Z 017 EL sufficient -
and NL. ,
NL necessary - greater weight for NL. 0‘0501 T IR
(a) L 3 NONLINEAR Al:lE:\II:]:YOS(iS(SE:C)

. . ] NECESSARY Equivalent-
Consistent with thresholds by : = =] nearto
Kaklamanos et al. (2013) - at 0.1 % B 7/ ension
and 0.4 %. § ?EQE:xekiNT-

- , B ] QRGeS /M Lineartresno
Correlation for different concepts for E 001 4
strains (estimated strain vs. maximum § AR AN
shear strain) needs to be addressed. ] ANALYSES SUFFICIENT
0.0010.01 ' 0l1 ' 'II I 10
W"’A Spectral period, T (s)




User Interface for Robust 1d Site Response Analysis
1D Site Response Analysis (e.g. DEEPSOIL)

ll Deepsoil v3.5 BETA: Non-linear Site Response Analysis for Deep Deposits M@]\
File Help
Step 1/6: Choose Type of Analysis
To begin, either complete the fields in the "Create New Profile” section and select "Next”, or press the "Open Existing Profile™ button to
Tobegin,dilercoy DEEPSOIL
—Create New Profile —Open I ]
Layers —Units Open Existing Profile...
# of Layers |10 @ English ¢ Metric

1
I
|
gl
I
I
I

—Eguivalent Linear
Freguency Domain: Define Soil Curve by Using:
" Linear <:| " Discrete Points

c Equivalentl-inear<:l [ | & Modified Hyperbolic Model
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Concluding Remarks
= NL-SRA is now widely used

= Emphasis on simple soil models for ease of soil property
selection

= Key developments :
= small and large strain damping formulations,
s pore water pressure generation models,
= Mobilized shear strength
s Increment of time steps

m Criteria for EL-NL selection is needed for effective simulation
(Always perform EL).

= Carefully designed graphical user interfaces to improve quality
of NL-SRA.
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Future Needs

= Implied strength

= Porewater pressure model calibration

= Uncertainty quantification
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