Caltrans Seismic Assessment of Bridge Inventory

Performance of Skewed Bridges

The 1994 Northridge Earthquake: Impacts, Outcomes, Next Steps

January 16-17, 2014 northridge20.org

Acknowledgments

Caltrans

Northridge

Source: NISEE

Name	Number	Replacement Cost	Date opened
Gavin Canyon UC	1	\$23,627,000	17 May 1994
Butte Canyon Bridge	Not listed	6,765,000	18 may 1994
La Cienega- Venice Sep.	Not listed	4,023,000	11 April 1994
La Cienega- Venice to Fairfax- Washington	8	34,584,000	11 April 1994
South Connector OC	Not listed	8,100,000	4 Nov 1994
North Connector OC	3	6,500,000	4 Nov 1994
Separation and Overhead Structures F and G	2	24,403,000	8 July 1994
Mission-Gothic UC*	5	15,433,000	13 May 1994
Bull Creek Canyon Channel UC	4	10,757,000	20 Nov 1994

Source: Aschheim, NISEE, 1994

Northridge and Skewed Bridges

Mission-Gothic Overcrossing 45° skew angle

Source: Buckle, NCEER-94-0008, 1984

Skew happens

Nonskewed Abutments

Las Mercedes Rt. 5 Overcrossing (Maule 2010 Chile Eq.; source, Buckle et al., EQ Spectra, 2012)

Current State of Practice

Skew Bridge Challenges

6'6" five criminals . one line up . no coincidence 6'0" 5'6" 5'0" 4'6" l î G

Skew-angled Abutments

Research Goals

Model skew abutment (component) Model ordinary bridges (system) Quantify ordinary bridge response. Ground motion characteristics (directionality, pulse, duration)

Engineering application.

 $\lambda(DV) = \int \int \int G(DV \mid DM) \cdot dG(DM \mid EDP) \cdot dG(EDP \mid IM) \cdot d\lambda(IM)$

Column Modeling

Lumped- Plasticity

✓ Beam with hinges
✓ Reinforcing steel
✓ Concrete 01 with stuff in cracks

Column Modeling

Displacement (mm)

(a) Flexural Hysteresis

(b) Torsional Hysteresis

Source: Li & Belarbi

Shear Key Modeling

Source: Megally et. al.

Shear Key Modeling

Effect of shear key modeling techniques on deck rotation for single column two span bridge.

Abutment Modeling

Abutment Modeling

Generalized Hyperbolic Force-Displacement (GHFD) Model Straight Abutments

- Backwall height-dependence is explicitly modeled
- Model parameters are physical soil properties

Abutment Modeling

Nonuniform Excitation

Nonuniform Excitation

Pile Group Effects

The Bridge Matrix

The Jack Tone Road On-Ramp Overcrossing

The La Veta Avenue Overcrossing

The Jack Tone Road Overhead

The Bridge Matrix

The Bridge Matrix

Multi-phase IM-EDP

Deck Rotation – Bridge A

EDP : Deck Rot. IM = 55 cm/s & Soil

Deck Rotation – Bridge A

Symt.

Col. Drift Ratio – Bridge A

Symt.

Asymt.

GM Directionality Effect

GM Directionality Effect

Column Ductility

Ground Motion Incidence Angle

Future Research Directions

- Extension of the study to other type of bridge configurations
 - Abutments (e.g., monolithic),
 - Geometry (e.g., curved deck),
 - New Technologies (e.g., self-centering columns)
- 2. Define rigorous structural damage measures and collapse indicators
- 3. Performance assessment at the network level
- 4. Enhancement in component and ground motion modeling

Thank You