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What is a Tall Building?

Overall height as a measure

v Some codes such as ASCE 7 impose limits on
lateral systems to be used based on height

Aspect ratio as a measure
Vibration period as a measure

Prevalence of higher modes in response
as a measure

No universally accepted definition exists
but you know one when you see one!




Should tall buildings be treated
like other buildings?
« Tall buildings are occupied by hundreds if not

thousands of people

 The consequence of failure of tall buildings is much
more severe than an ordinary building

 Codes provide a “one size fits all” approach to
seismic design.

« Tall buildings as small class of specialized
structures will perform better during earthquakes if
special attention is afforded to their individual
characteristics.

* Prescriptive codes are not equipped with means to
distinguish these differences.



Why prescriptive codes are not
suitable?

Because they simply cannot give you what you need.

Linear analysis is incapable of accurately predicting
collapse and failure which are inherently nonlinear

The overwhelming majority of construction in United
States and worldwide consists of low-rise buildings

W 1 to 3 Stories (93%)
O 14 Stories and Taller (1%)

M 4 to 13 Stories (6%)

Prescriptive provisions are not generally written with tall
buildings in mind.




We will examine two guidelines.
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ASCE 41and Tall Building Design Guidelines

 ASCEA41 is officially intended for seismic
rehabilitation of existing structures

« However, its component-based performance
limits for NDP are routinely referenced by
guidelines for performance based design of
tall buildings

* Engineers who believe ASCE 41limits are too
conservative, or are not applicable to their
project, conduct tests to establish appropriate
limits

* Peer review approval is always necessary for
any deviation from ASCE 41



Common Performance Objectives
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— Similar objectives permitted. Emphasis on two events:
« 475 years (10% in 50 years), and
« 2,475 years (2% in 50 years)

« Tall Building Design Guidelines

— Serviceability: 43 years
— Collapse Prevention: 2,475 years



Analytical Procedures

« ASCE-41 permits four types of analyses:
1. Linear elastic static procedure (LSP)

2. Linear dynamic procedure (LDP) or response
spectrum analysis

3. Non-linear static procedure (NSP) commonly
referred to as the push-over analysis, and

4. Dynamic nonlinear response analysis (NDP).

« Tall Building Design Guidelines permit only
two:
1. 3D LDP or NDP for serviceability check
2. 3D NDP for all other checks



PEER-TBI & LATBSDC Performance Objectives

1. Serviceable behavior under events having a 50%
probability of being exceeded in 30 years (43 year
return period)

* building structural and nonstructural components retain
their general functionality during and after earthquake

* Repairs, if necessary, are expected to be minor and
could be performed without substantially affecting the
normal use and functionality of the building

2. A low probability of collapse under events having

a 2% probability of being exceeded in 50 years

(2,475 year return period)

« Demands are checked for all structural members (lateral
as well as gravity system)

« Claddings and their connections to the structure must
accommodate MCE displacements without failure



PEER-TBI & LATBSDC Provisions

1. Use 2.5% damping instead of 5% damping but
permit DCR = 1.5 for deformation controlled

members for serviceability.

2. 2011 LATBSDC limits DCR to 0.70 for force
controlled members in serviceability check.

3. 2010 PEER requirements for collapse prevention

are more elaborate and detailed than 2011
LATBSDC

4. No minimum base shear capacity requirement




Design Procedures

 None of the guidelines tell you how to design

 For example, 2011 LATBSDC states:

v Use Capacity Design Techniques
v Develop Project-specific Design Criteria, and

v Clearly define where nonlinearity can occur and make sure it
does not occur elsewhere

v Recommends preferred zones of nonlinearity

* But they do not explain how the engineer is
supposed to achieve this design.




Table 2. Zones and actions commonly designated for nonlinear behavior

Structural System

Zones and Actions

Special Moment Resisting Frames
(steel , concrete, or composite)

Flexural yielding of Beam ends (except for
transfer girders)
Shear in Beam-Column Panel Zones

Special Concentric Braced Frames

Braces (vielding in tension and buckling in
compression)

Eccentric Braced Frames

Shear Link portion of the beams (shear
vielding preferred but combined shear and

flexural yielding permitted).

Unbonded Braced Frames

Unbonded brace cores (vielding in tension
and compression)

Special Steel-Plate Shear Walls

R/C Shear Walls

Foundations

Shear yielding of web plates

Flexural vielding of Beam ends

P-M-M vielding at the base of the walls
(top of foundation or basement podiums)
or other clearly defined locations with
plastic lhinge region permitted to extend to
a reasonable height above the lowest
plane of nonlinear action as necessary.

Flexural yielding and/or shear yielding of
link beams

Controlled rocking
Controlled settlement

Source: 2011 LATBSDC



Evaluation Procedures

* All guidelines require a three-
dimensional detailed mathematical
model of the physical structure

 Realistic estimates of stiffness and
damping

« Expected material properties for
ductile elements

« Specified material properties for
brittle elements



Table 3. Suggested expected Material Strengths

Material Expected Strength
Strength
Structural
steel Hot-rolled structural shapes and bars
ASTM A36/A36M 1.5F;
ASTM A572/A572M Grade 42 (290) 1.3F,
ASTM A992/A992M 115,
All other grades L.1E,
Hollow Structural Sections
ASTM A500, A501, A618 and A847 1.3F;
Steel Pipe
ASTM A53/A53M 1.4F,
Plates 1.1F,
All other products 1.1F,

Remnforcing 1.17 times specified f,

steel
Concrete 1.3 times specified /.

Source: 2011 LATBSDC



Effective Stiffness Values for
Linear Analysis

Table 4. Su&gested effective component stiffness values

Component Flexural Shear Axial
Rigidity Rigidity Rigidity

Structural steel Beams. Columns and Egl GsA EA
Braces

Composite Concrete Metal Deck Floors 0.5E.1, G.A, E.A,
R/C Beams — nonsprestressed 0.5E]; G.A, E.A,
R/C Beams — prestressed Ecl, GA, E.A,
R/C Columns 0.5E.L; G.A, E.A,
R/C Walls 0.75E.L; G.A, E.A,
R/C Slabs and Flat Plates 0.5E., G.A, E.A,
Notes:

E. shall be computed using expected material strength
G. shall be computed as Ec/(2(1+v). where v 1s taken as 0.20

Source: 2008 LATBSDC, 2010 PEER




Effective Stiffness Values for Linear Analysis

Table 3. Reinforced Concrete Stiffness Properties

Element Serviceability and Wind MCE-Level Nonlinear Models
Structural Walls Flexural — 0.9 Ig Flexural — 1.0 Ec * **
Shear— 1.0 Ag Shear— 0.5 Ag
Basement Walls Flexural — 1.0 Ig Flexural - 0.8 Ig
Shear— 1.0 Ag Shear— 0.8 Ag
Coupling Beams Flexural — 0.5 Ig Flexural - 0.2 Ig
Shear— 1.0 Ag Shear— 1.0 Ag
Diaphragms (in-plane only) Flexural - 0.5 Ig Flexural — 0.25 Ig
Shear— 0.8 Ag Shear — 0.25 Ag
Moment Frame Beams Flexural — 0.7 Ig Flexural — 0.35 Ig
Shear— 1.0 Ag Shear— 1.0 Ag
Moment Frame Columns Flexural — 0.9 Ig Flexural — 0.7 Ig
Shear— 1.0 Ag Shear— 1.0 Ag

* Modulus of elasticity 1s based on the following equations:
E. = 57000\jrf for f°, < 6000 psi

E, =40000,/f! +1x10° forf.>6000psi (per ACI 363R-92))

** Nonlinear fiber elements automatically account for cracking of concrete because the concrete fibers have
zero tension stiffness.

Source: 2011 LATBSDC



Analysis Methods

« Serviceability:
v Can use either

1. Linear Response Spectrum Analyses
e CQC mode combination
 90% mass participation

2. Nonlinear Response History Analyses

 For MCE (ultimate state) evaluation:
v Must use
* Nonlinear Response History Analyses
* Inherent torsional properties of the
structural system should always be
considered.



P-A Inclusion

 P-A effects must be
included in all
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Modeling Nonlinear Behavior
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Modeling Nonlinear Behavior

« Concentrated plasticity model for beams and
columns and fiber elements for walls are
most common

« All other elements and components that in
combination significantly contribute to or
affect the total or local stiffness of the
building should be included in the

mathematical model.

- Axial deformation of gravity columns ;
in a core-wall system is one example e
of effects that should be L
considered in the structural model %= L
of the building

o7

No beams /

Figure courtesy of MKA
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Accidental Eccentricity (AE)

2011 LATBSDC

v' Consider implications during serviceability evaluation
v Address if significant during MCE evaluation

2010 PEER TBI

v Do not need to consider

Consideration of AE in nonlinear analyses
requires multiple evaluations and little is gained
by such time-consuming exercises.




Modeling Strength / Stiffness Degradation

- 2010 PEER TBI

v'Provides detailed guidelines on four
approved methods for modeling
degradation

- 2011 LATBSDC

v Adopts the first two of the detailed
procedures contained in 2010 PEER.




2010 PEER TBI Degradation Modeling Options
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Upper Limit on Column Axial Forces

» Large axial forces reduce available
column ductility

« 2011 LATBSDC
vMCE: P< 0.4F A,

« 2010 PEER TBI
v MCE: P < balanced load
<0.3f g



Soil-Foundation-Structure-Interaction (SFSI)

 Naeim & Stewart (2008)
demonstrated the difficulties of
realistic modeling of SFSI in a design

environment.

« 2010 PEER TBI has two
recommended modeling techniques

« 2011 LATBSDC recommends a single
approach for this.




2010 PEER TBI Suggested
Modeling Techniques for SFSI

2011 LATBSDC
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Damping

« A particularly thorny issue

v In nonlinear analyses most of the damping is
represented by hysteretic behavior of the elements

v Some small additional viscous damping may be
justified for:

* Energy dissipation provided by components
and systems not explicitly modeled

* As necessary to avoid numerical instability

- 2011 LATBSDC

v Limits viscous damping to 2.5% for both
serviceability and MCE.

« 2010 PEER TBI

v' 2.5% for linear serviceability evaluation
v Refers to ATC-72 for nonlinear evaluation



Ground Motion Selection and Scaling

A minimum of 7 pairs is usually required

2011 LATBSDC
v Adopts by reference Chapter 21 of ASCE 7

2010 PEER TBI
v More flexible
v Permits scaling, matching or CMS

v Multiple CMS required if CMS is used, making
this impractical for tall buildings

* Most practicing engineers prefer matching

v One must be careful as, matched motion
contains less record to record dispersion



Acceptance Criteria -- Maximum Drift

 Absolute Maximum Transient Drift
Limit
v'Serviceability:
« 2011 LATBSDC & 2010 PEER TBI:
0.005 overall

v MCE:
e 2011 LATBSDC & 2010 PEER TBI:

0.030 max average at any story

0.045 max. interstory drift at any story under any
record




Acceptance Criteria -- Maximum Drift

 Absolute Maximum Residual Drift
Limit
v'Serviceability:
« 2011 LATBSDC 0.005 overall

v MCE:
e 2011 LATBSDC and 2010 PEER:

0.010 average max. of time histories
0.015 maximum from any




Acceptance Criteria -- Serviceability

- 2011 LATBSDC

v'Brittle Actions:
Strength Demand < 0.7*Capacity

v Ductile Actions:
* Linear Analysis
Strength Demand < 1.50 Capacity
* Nonlinear Analysis
Can use up to 10 limit of ASCE 41




Acceptance Criteria
MCE

- 2010 PEER and 2011 LATBSDC

v Ductile Actions:

e Deformation Demand < ASCE 41-06 CP
Deformation Capacity

e Continuous Load Path

e Capacity exhausted when it drops below
80% of maximum strength




Acceptance Criteria -- MCE

« 2010 PEER
v Brittle Actions:

e Two Groups:
e Critical Actions

e failure mode pose severe consequences to
structural stability under gravity and/or lateral
loads

* Design for mean + 1.3 to 1.5 times SD
* Noncritical Actions

* Design for mean values

e Use ¢ =0.75 for shear

« 2011 LATBSDC

v Essentially the same, except uses 1.5 times
mean and ¢ =1.0



R/C Specific Requirements

* None in 2010 PEER

« Several in 2011
LATBSDC

v'Detailing

* The spacing limit of 12
inches of ACI 318
§21.5.3.2 (d) is reduced

to 6 inches.

v'High-Strength
Concrete




Peer Review Requirements

« Each project needs a Seismic Peer Review Panel
(SPRP)

« SPRP is to provide an independent, objective,
technical review of design

* Paid by the owner but reports to Building Official

* Responsibility for the structural design remains
solely with the EOR

« SPRP is not a plan checking entity

 Minimum of three members with recognized
expertise in relevant fields such as:
v' structural engineering
v earthquake engineering research
v performance-based earthquake engineering
v nonlinear response history analysis
v tall building design

v earthquake ground motions, geotechnical engineering,
geological engineering



Instrumentation Requirements

« 2010 PEER TBI
v'"No requirements

2011 LATBSDC

v'Detailed requirements
v'Consistent with CGS / CSMIP

Table 5. Minimum tall building instrumentation levels

Number of Stories Above Ground Minimum Number of Sensors
10-20 15
20-30 21
30 - 50 24
> 50 30




A typical tall building
instrumented by CSMIP
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Los Angeles - 54-story Office Bldg
(CSMIP Station No. 24629)
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Applications

 Many tall buildings have been designed using
these guidelines in Los Angeles, San Francisco,

San Diego, and elsewhere

« Here are some examples

v Los Angeles:

888 Olive

1133 Olive

1212 Flower Towers

. Wilshire & Grand

. Metropolis Tower
v San Diego

. 7th & Ash

v" San Francisco
. Transbay Tower



« 888 Olive Street
in downtown
Los Angeles

v' 34 stories

v Core wall construction
v' Podium

v' Subterranean levels
v' Basement walls

v Flat plates

v Gravity columns

[lustrations and drawings courtesy of Onni Group and Glotman-Simpson
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Thank you!
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