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  What is a Tall Building? 

•  Overall height as a measure 
ü Some codes such as ASCE 7 impose limits on 

lateral systems to be used based on height 
•  Aspect ratio as a measure 
•  Vibration period as a measure 
•  Prevalence of higher modes in response 

as a measure 
•  No universally accepted definition exists 

but you know one when you see one!  
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Should tall buildings be treated 
like other buildings? 

 •  Tall buildings are occupied by hundreds if not 
thousands of people 

•  The consequence of failure of tall buildings is much 
more severe than an ordinary building 

•  Codes provide a “one size fits all” approach to 
seismic design.  

•  Tall buildings as small class of specialized 
structures will perform better during earthquakes if 
special attention is afforded to their individual 
characteristics. 

•  Prescriptive codes are not equipped with means to 
distinguish these differences. 
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Why prescriptive codes are not 
suitable? 

•  Because they simply cannot give you what you need. 
•  Linear analysis is incapable of accurately predicting 

collapse and failure which are inherently nonlinear 
•  The overwhelming majority of construction in United 

States and worldwide consists of low-rise buildings 

•  Prescriptive provisions are not generally written with tall 
buildings in mind. 
 

1 to 3 Stories (93%)

 14 Stories and Taller (1%)

4 to 13 Stories (6%)



  We will examine two guidelines. 



  ASCE 41and Tall Building Design Guidelines 

•  ASCE41 is officially intended for seismic 
rehabilitation of existing structures 

•  However, its component-based performance 
limits for NDP are routinely referenced by 
guidelines for performance based design of 
tall buildings 

•  Engineers who believe ASCE 41limits are too 
conservative, or are not applicable to their 
project, conduct tests to establish appropriate 
limits 

•  Peer review approval is always necessary for 
any deviation from ASCE 41 
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  Common Performance Objectives 

•  SEAOC-99 

•  ASCE 41 
–   Similar objectives permitted. Emphasis on two events: 

•  475 years (10% in 50 years), and 
•  2,475 years (2% in 50 years) 

 

•  Tall Building Design Guidelines 
–  Serviceability: 43 years 
–  Collapse Prevention: 2,475 years 
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  Analytical Procedures 

•  ASCE-41 permits four types of analyses: 
1.   Linear elastic static procedure (LSP) 
2.   Linear dynamic procedure (LDP) or response 

spectrum analysis 
3.   Non-linear static procedure (NSP) commonly 

referred to as the push-over analysis, and  
4.   Dynamic nonlinear response analysis (NDP). 

  
•  Tall Building Design Guidelines permit only 

two: 
1.   3D LDP or NDP for serviceability check 
2.   3D NDP for all other checks 
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  PEER-TBI & LATBSDC Performance Objectives  

1.   Serviceable behavior under events having a 50% 
probability of being exceeded in 30 years (43 year 
return period) 
•  building structural and nonstructural components retain 

their general functionality during and after earthquake 
•  Repairs, if necessary, are expected to be minor and 

could be performed without substantially affecting the 
normal use and functionality of the building 

2.   A low probability of collapse under events having 
a 2% probability of being exceeded in 50 years 
(2,475 year return period)  
•  Demands are checked for all structural members (lateral 

as well as gravity system) 
•  Claddings and their connections to the structure must 

accommodate MCE displacements without failure 



  

1.   Use 2.5% damping instead of 5% damping but 
permit DCR = 1.5 for deformation controlled 
members for serviceability. 

2.   2011 LATBSDC limits DCR to 0.70 for force 
controlled members in serviceability check. 

3.   2010 PEER requirements for collapse prevention 
are more elaborate and detailed than 2011 
LATBSDC 

4.   No minimum base shear capacity requirement 

PEER-TBI & LATBSDC Provisions 



  Design Procedures 

•  None of the guidelines tell you how to design 
•  For example, 2011 LATBSDC states: 

ü Use Capacity Design Techniques 
ü Develop Project-specific Design Criteria, and 
ü Clearly define where nonlinearity can occur and make sure it 

does not occur elsewhere 
ü Recommends preferred zones of nonlinearity 

•  But they do not explain how the engineer is 
supposed to achieve this design.  
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Source: 2011 LATBSDC ROSE School 2013 12 



  Evaluation Procedures 

•  All guidelines require a three-
dimensional detailed mathematical 
model of the physical structure 

•  Realistic estimates of stiffness and 
damping  

•  Expected material properties for 
ductile elements  

•  Specified material properties for 
brittle elements 
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Source: 2011 LATBSDC Performance Based Seismic Assessment of Tall Buildings – I 14 



Effective Stiffness Values for 
Linear Analysis  

Source: 2008 LATBSDC, 2010 PEER ROSE School 2013 15 



Effective Stiffness Values for Linear Analysis  

Source: 2011 LATBSDC 
ROSE School 2013 Performance Based Seismic Assessment of Tall Buildings – I 16 



  Analysis Methods 

•  Serviceability: 
ü  Can use either 

1.   Linear Response Spectrum Analyses 
�  CQC mode combination 
�  90% mass participation 

2.   Nonlinear Response History Analyses 
•  For MCE (ultimate state) evaluation: 

ü  Must use 
�  Nonlinear Response History Analyses 

•  Inherent torsional properties of the 
structural system should always be 
considered. 
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  P-Δ Inclusion 

•  P-Δ effects must be 
included in all 
analyses ROOF DRIFT ANGLE vs. NORMALIZED BASE SHEAR

Pushover (NEHRP '94 k=2 pattern); LA 20-Story
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Figure courtesy of  Prof. Helmut Krawinkler 



  Modeling Nonlinear Behavior 

Figure courtesy of  Prof. Prof. Greg Deierlein 
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  Modeling Nonlinear Behavior 

•  Concentrated plasticity model for beams and 
columns and fiber elements for walls are 
most common 

•  All other elements and components that in 
combination significantly contribute to or 
affect the total or local stiffness of the 
building should be included in the 
mathematical model.  

•  Axial deformation of gravity columns 
in a core-wall system is one example  
of effects  that should be  
considered in the structural model 
of the building 

Figure courtesy of  MKA 
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  Accidental Eccentricity (AE) 

•  2011 LATBSDC 
ü Consider implications during serviceability evaluation 
ü Address if significant during MCE evaluation 

•  2010 PEER TBI 
ü Do not need to consider 

•  Consideration of AE in nonlinear analyses 
requires multiple evaluations and little is gained 
by such time-consuming exercises. 
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  Modeling Strength  / Stiffness Degradation 

•  2010 PEER TBI 
ü Provides detailed guidelines on four 

approved methods for modeling 
degradation 

•  2011 LATBSDC 
ü Adopts the first two of the detailed 

procedures contained in 2010 PEER.  

22 



  2010 PEER TBI Degradation Modeling Options 

Figure courtesy of  Prof. Helmut Krawinkler 
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  Upper Limit on Column Axial Forces 

•  Large axial forces reduce available 
column ductility 

•  2011 LATBSDC 
ü MCE: P < 0.4f’cAg  

•  2010 PEER TBI 
ü MCE: P < balanced load 
                  < 0.3f’cAg 
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  Soil-Foundation-Structure-Interaction (SFSI) 

•  Naeim & Stewart (2008) 
demonstrated the difficulties of 
realistic modeling of SFSI in a design 
environment.  

•  2010 PEER TBI has two 
recommended modeling techniques 

•  2011 LATBSDC recommends a single 
approach for this. 
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2010 PEER TBI Suggested 
Modeling Techniques for SFSI 

2011 LATBSDC 
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  Damping 

•  A particularly thorny issue 
ü  In nonlinear analyses most of the damping is 

represented by hysteretic behavior of the elements 
ü Some small additional viscous damping may be 

justified for: 
�  Energy dissipation provided by components 

and systems not explicitly modeled 
�  As necessary to avoid numerical instability 

•  2011 LATBSDC 
ü  Limits viscous damping to 2.5% for both 

serviceability and MCE.  

•  2010 PEER TBI 
ü  2.5% for linear serviceability evaluation 
ü Refers to ATC-72 for nonlinear evaluation 
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  Ground Motion Selection and Scaling 

•  A minimum of 7 pairs is usually required 
•  2011 LATBSDC 

ü Adopts by reference Chapter 21 of ASCE 7  
•  2010 PEER TBI 

ü More flexible 
ü Permits scaling, matching or CMS 
ü Multiple CMS required if CMS is used, making 

this impractical for tall buildings 
•  Most practicing engineers prefer matching 

ü One must be careful as, matched motion 
contains less record to record dispersion  
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  Acceptance Criteria -- Maximum Drift 

•  Absolute Maximum Transient Drift 
Limit 
ü Serviceability: 

� 2011 LATBSDC & 2010 PEER TBI:   
0.005 overall 

ü  MCE: 
� 2011 LATBSDC & 2010 PEER TBI: 

0.030 max average at any story 
0.045 max. interstory drift at any story under any 

record  
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  Acceptance Criteria -- Maximum Drift 

•  Absolute Maximum Residual Drift 
Limit 
ü Serviceability: 

� 2011 LATBSDC 0.005 overall  
ü  MCE: 

� 2011 LATBSDC and 2010 PEER: 
  0.010 average max. of time histories 

  0.015 maximum from any  
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  Acceptance Criteria -- Serviceability 

•  2011 LATBSDC 
ü Brittle Actions: 

Strength Demand < 0.7*Capacity 
ü  Ductile Actions: 

� Linear Analysis 
Strength Demand < 1.50 Capacity 

� Nonlinear Analysis 
Can use up to IO limit of ASCE 41 
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  Acceptance Criteria  
MCE 

•  2010 PEER and 2011 LATBSDC 
ü  Ductile Actions: 

� Deformation Demand < ASCE 41-06 CP 
Deformation Capacity 

� Continuous Load Path 
� Capacity exhausted when it drops below 

80% of maximum strength 
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  Acceptance Criteria -- MCE 

•  2010 PEER 
ü Brittle Actions: 

� Two Groups: 
�  Critical Actions  

�  failure mode pose severe consequences to 
structural stability under gravity and/or lateral 
loads 

�  Design for mean + 1.3 to 1.5 times SD 
�  Noncritical Actions  

�  Design for mean values 
�  Use ϕ = 0.75 for shear 

•  2011 LATBSDC 
ü Essentially the same, except uses 1.5 times 

mean and ϕ = 1.0  
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  R/C Specific Requirements 

•  None in 2010 PEER 
•  Several in 2011 

LATBSDC  
ü Detailing 

� The spacing limit of 12 
inches of ACI 318 
§21.5.3.2 (d) is reduced 
to 6 inches.  

ü High-Strength 
Concrete 
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  Peer Review Requirements 

•  Each project needs a Seismic Peer Review Panel 
(SPRP) 

•  SPRP is to provide an independent, objective, 
technical review of design 

•  Paid by the owner but reports to Building Official 
•  Responsibility for the structural design remains 

solely with the EOR 
•  SPRP is not a plan checking entity  
•  Minimum of three members with recognized 

expertise in relevant fields such as: 
ü  structural engineering 
ü  earthquake engineering research 
ü  performance-based earthquake engineering 
ü  nonlinear response history analysis 
ü  tall building design 
ü  earthquake ground motions, geotechnical engineering, 

geological engineering 
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  Instrumentation Requirements 

•  2010 PEER TBI 
ü No requirements 

•  2011 LATBSDC 
ü Detailed requirements 
ü Consistent with CGS / CSMIP 
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A typical tall building 
instrumented by CSMIP 

ROSE School 2013 Performance Based Seismic Assessment of Tall Buildings – I 37 



  Seismic  
Instrumentation 

CSMIP sensor layout ROSE School 2013 38 



  Applications 

•  Many tall buildings have been designed using 
these guidelines in Los Angeles, San Francisco, 
San Diego, and elsewhere 

•  Here are some examples 
ü  Los Angeles: 

�  888 Olive 
�  1133 Olive 
�  1212 Flower Towers 
�  Wilshire & Grand 
�  Metropolis Tower 

ü  San Diego 
�  7th & Ash 

ü  San Francisco 
�  Transbay Tower 
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•  888 Olive Street 
in downtown 
Los Angeles  
ü  34 stories 
ü  Core wall construction 
ü  Podium 
ü  Subterranean levels 
ü  Basement walls 
ü  Flat plates 
ü  Gravity columns 

Illustrations and drawings courtesy of Onni Group and Glotman-Simpson 



Illustrations and drawings courtesy of Onni Group and Glotman-Simpson 
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CHRIS DIKEAKOS
ARCHITECTS INC.

SCALE:  1/32" = 1'-0"
OLIVE ST. MIXED-USE DEVELOPMENT
817 - 825 Hill St. & 820 S. Olive St., Los Angeles, CA

SECTION
August 26th, 2013 A306Design Development

 1/32" = 1'-0"A201
1 Section 9
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ARCHITECTS INC.

SCALE:  1/32" = 1'-0"
FLOWER ST. MIXED-USE DEVELOPMENT
1212 S. Flower Street, Los Angeles, CA

BUILDING SECTIONS
August 26, 2013 A305DESIGN DEVELOPMENT

 1/32" = 1'-0"A201
1 TOWER 2 BUILDING SECTION

 1/32" = 1'-0"A201
2 TOWER 1 BUILDING SECTION
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Thank you! 
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