

The US Experience in Northridge

Michael Mahoney

Federal Emergency Management Agency

The 1994 Northridge Earthquake: Impacts, Outcomes, and Next Steps

January 16-17, 2014 Los Angeles, CA

20 Years + 1 Day Ago

- Steel moment frame construction was seen as one of the best seismic performers.
- Desirable technique due to flexibility and open space.
- However, economic pressures led to the use of cost effective techniques not as thoroughly tested.
 - High deposition weld metals.

ΗH

20 Years Ago Today

- Northridge earthquake occurs early morning on January 17, 1994.
- Occurring early morning on a holiday greatly reducing the casualties.
- Steel moment frame buildings appear to be largely unaffected.
 - Thank you Hank.

Los Angeles Times

And Then...

- February, 1994
 - Initial reports of fractured connections.
 - CSAA building
 - Santa Clarita City Hall
 - Borax Building
 - Getty Museum
- May, 1994
 - Wide-scale reports of damage documented, including in FEMA recovery applications.

The Northridge Problem

- Damage observed was brittle fractures of beam to column welded connections
- Fractures were found in welds, in the parent material, and extending into columns
- Many buildings had fractured connections:
 - new and old
 - tall and short
 - conventional and critical facilities

The Northridge Problem

- This unexpected performance occurred in a less than design, or "elastic" event.
- While there were no collapses, there was also no observed ductile behavior.
- Damage was not visible; inspections difficult.
- Result was a loss of confidence in current code requirements.
- The level of safety and how to repair were unknown.
- This was a significant problem for owners, regulators and for FEMA, as the funder of repair/replacement of buildings owned by public and non-profit entities.

Overview of Development Process

- September, 1994
 - SAC Joint Venture formed.
 - FEMA contracts with the SAC Joint Venture.
 - Funding for Phase 1 was \$2 M; FEMA's share of NEHRP Northridge Congressional supplemental.
 - SAC Advisories 1 and 2 are prepared and distributed at SEAOC Convention.

Overview of Development Process

- December, 1994
 - SAC Advisory 3 is prepared and published.
 - Sees broader distribution than Advisories 1 and 2.
 - Its focus is on inspection and repair of damaged connections.

Overview of Development Process

- August, 1995
 - FEMA-267 Interim Guidelines published.
 - inspection & repair
 - retrofit (modification)
 - design & construction of new buildings
 - Recommendations were <u>Interim</u> and advisory.
 - Rapidly accepted as a code.

Phase 2: FEMA Program to Reduce the Earthquake Hazards of Steel Moment-Frame Structures

- Goal of Phase 2 was to develop reliable, practical and cost effective guidelines for:
 - the design and construction of new steel momentframe buildings,
 - the identification, inspection, evaluation and retrofit of existing steel moment-frame buildings, and
 - the identification, evaluation, repair or upgrading of damaged buildings following earthquakes.
- Competitively contracted with the SAC Joint Venture.
- Funding was ~\$16M, half from President's Northridge Supplemental and half from FEMA NEHRP funds.

FEMA

Overall Technical Approach

The FEMA/SAC Steel Project

Initial Phase 2 Products

- Background Reports on Metallurgy, Fracture Mechanics, Welding, Moment Connections and Frame Systems published as FEMA 288.
- Connection Test Summaries (FEMA 289).
 - Superseded by Prequalified Connections for Special and Intermediate Steel Moment Frame for Seismic Applications - AISC 358.
- Interim Guidelines Advisory No. 1 Supplement to FEMA 267 published in 1996.
- Available from FEMA and <u>www.sacsteel.org</u>.

Design Provisions for New Buildings

- Final Design Guidelines were among the first to quantify performance, and provided:
 - 90% confidence of less than a 2% probability of global collapse in 50 years
 - 50% confidence of less than a 2% probability of local damage capable of resulting in partial collapse in 50 years

Achieved for New Buildings by:

- Use of NEHRP Provisions for structure analysis and proportioning:
 - Definition of design earthquake
 - Analysis procedures and modeling
 - Force reduction factors, redundancy factors, drift limits, etc.
 - Proportioning (strong columnweak girder, etc.)
- Welding specifications and QA/QC more clearly stated.

- Use of "prequalified" connections:
 - Explicit design calculations
 - Limits on range of materials, sizes, relative strengths, details, etc. that can be used

Welded Prequalified Connections

- "Improved" unreinforced connections.
- Reinforced connections
- Welded flange plate connections
- Reduced beam section connections

Bolted Prequalified Connections

Bolted Connections

- Tee-stub Connections
- Bolted flange plate connections
- End plate connections

Gravity Connections

 Simple connections with and without slabs

Final FEMA/SAC Guidelines

- **FEMA-350:** Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings.
- **FEMA-351:** Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings.
- FEMA-352: Recommended Post-earthquake Evaluation and Repair Criteria for Welded, Steel Moment- Frame Buildings.
- **FEMA-353:** Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications.

FEMA 355 CD

CD contains all four Guides and State of Art Reports:

- FEMA-355A: Base Metals and Fracture
- FEMA-355B: Welding and Inspection
- FEMA-355C: Systems Performance
- FEMA-355D: Connection Performance
- FEMA 355E: Past Performance of Steel Moment-Frame Buildings in Earthquakes
- FEMA-355F: Performance Prediction and Evaluation

Seismic Design Criteria for Steel Moment-Frame Structures: FEMA 350, 351, 352, and 353 Policy Guide: FEMA 354 State of the Art Reports: FEMA 355A, B, C, D, E, and F

FEMA 355

Status of Design Guidance Products

- FEMA 350 355 continue to be available free of charge from FEMA; call 1-800-480-2520
 - FEMA 350 has been incorporated into AISC 341 but is still available for reference.
 - FEMA 351-353 are still applicable and available.
- FEMA 355 CD contains all of publications and state of the art reports.
 - Also includes FEMA 354: Policy Guide for Building Owners and Community Officials
 - Moving to CD and online only.
- Related training courses conducted by AISC.

Summary

- This six year, \$12 million project conducted at the request of the FEMA Director and funded by both the Congress and the President.
- Goal was to research and develop criteria for:
 - design of new steel frame construction,
 - upgrading of existing buildings, and
 - inspection and repair of damaged buildings.
- This was the first FEMA effort to combine academic research with practical engineering expertise to develop technical guidance products to address a post-disaster need.

Conclusions / Acknowledgements

- This project done during "heyday" of NEHRP.
 - We had the funding and staff to do this.
- Could this be done again today? No.
 - FEMA Response better due to links to DHS.
 - Preparedness better due to post-Katrina funding.
 - But, NEHRP has less than $\frac{1}{2}$ the funding and staff.
- Thank you to James Lee Witt.
 - Secured funding and agreed to wait five years.
- Thank you to the SAC Joint Venture.
 - Steve Mahin, Ron Hamburger, Jim Malley, Bill Hall.