SEISMIC RETROFIT OF A NON-DUCTILE CONCRETE TOWER USING PERFORMANCE BASED APPROACH

Saiful Islam, Ph.D., S.E. President, SAIFUL/BOUQUET Structural Engineers

January 16-17, 2014 - University of California, Los Angeles

Northridge Earthquake

Existing Building Description

- 4-story Conc. Residential Tower
- Built in 1972 (UBC 1965)
- Constructed of Lt.-Wt. Concrete
- 8-inch thick P/T floors
- Perimeter P/T Non-Ductile Concrete Moment Frames

Webb Tower, University of Southern California

Existing Floor Plan

Existing Frame Elevation

NORTHRIDGE 20

SYMPOSIUM

Seismic Concerns

- Non-Ductile Concrete Moment Frames
- Exist'g Beams heavily reinforced but w/ minimal confinement
- Severe post-yield strength / stiffness degradation
- Story Drift Excessive for a Non-Ductile Frame Bldg.
- Excessive Joint Shear

Seismic Strengthening Objective

FEMA 356 (ASCE 41) *"Basic Safety Objective"* 475-yr Eq. = Life Safety 2475-yr Eq. = Collapse Prevention

Design Objective & Challenges

- Reduce Reliance on Non-Ductile Concrete Frames
- Minimize Impact on Interior Layout
- Allow at least one window to each dorm room.
- Solution must be aesthetically acceptable

Multiple Structural Schemes Investigated

- Interior Schemes Ruled out early in the Design
- Exterior Schemes Only:
 - 1. Shear Wall Scheme
 - 2. Conventional Steel Brace
 - 3. Exterior Buckling Restrained (Unbonded) Brace Frame

Advantages of Exterior Scheme

- Did not require reconfiguration of the rooms
- P/T tendons in the slab did not need to be located.
- Interior renovation work could occur concurrently with the exterior seismic work

ETABS Model – Shear Wall Scheme

Unbonded Brace Frame Scheme

Buckling Restrained Brace Frame Scheme

Why Buckling Restrained Braces?

- Stable Energy Dissipation Characteristics
- Non-Degrading Stiffness & Strength behavior
- Required less braces than conventional steel brace frame.
- BRB does not buckle. Because of exterior application, large deformations associated w/ buckling of conventional braces not an option

BRBF Retrofit Scheme

- New Cols: 20" x 30"
- New Beams: 20" x 22"
- **BRB's: 230-700 kip capacity.**
- Enlarge Existing spread footings.

Design Approach

DESIGN:

Based on linear dynamic response spectrum analysis

- 475-yr Eq.
- R = 8 (Moment Resisting Beam-to-Column Conn.)

VERIFICATION: (Perform 3D)

Based on Non-Linear Time-History Analysis

- BSE-1 (475-yr) Eq. = Life Safety
- BSE-2 (2475-yr) Eq. = Collapse Prevention

Perform 3D Model

Criteria For Nonlinear Verification Analyses

	Components	475-yr Eq.	2475-yr Eq.	
Βι	ckling Restrained Braces			
	Axial Strain (From Tests)	2.12% (Type B1) 3.04% (Type B2-B5)	2.12% (Type B1) 3.04% (Type B2-B5)	
	Cumulative Plastic Ductility (From Tests)	400 (Type B1) 1260 (Type B2-B5)	400 (Type B1) 1260 (Type B2-B5)	
Existing Concrete Beams Plastic Rotation (FEMA-356)		0.01 rad.	0.015 rad.	
New Concrete Beams Plastic Rotation (FEMA-356)		0.02 rad.	0.025 rad.	

Existing Building Deflection

Displacement (in)

Story Drift (Avg. of 7) – 475 yr EQ

<u>Story Drift (Avg. of 7) – 2475 yr</u>

NORTHRIDGE 20 SYMPOSIUM

Existing Beam Plastic Rotation – 475-yr Eq.

Buckling-Restrained Brace Demands

Brace	Brace N Nominal B Capacity per (k)	No. of	No. of Braces per Frame	EQIII		EQIV			
Mark		per Frame		Axial Strain	Ductility	CPD	Axial Strain	Ductility	CPD
B1	230	8	11th-Roof	1.06%	9.7		1.45%	13.2	
B2	380	6	8th-11th	1.31%	12.0		1.74%	15.8	
B3	450	6	5th-8th	1.80%	16.5	129	2.49%	22.8	192
B4	570	6	2nd-5th	1.30%	11.9		1.92%	17.6	
B5	700	2	Grnd-2nd	0.79%	7.2		1.55%	14.2	

Allowable Limits: Axial Strains: 2-3% CPD: 400 min

CONCLUDING REMARKS

BEFORE

AFTER

